
[In: Uwe Reyle (ed.)(2000) Presuppositions and Underspecification in the Computa-
tion of Temporal and other Relations in Discourse. SFB 340, Report 164. 149-200.]

Computing Discourse Relations on a Linguistic Basis

Kai-Uwe Carstensen

Abstract

This paper describes the implementation of some of the theoretical work in B9/A12
(cf. [6],[5],[4], [3]) that was developped in the final year of the projects. It can be
clearly divided into two phases, which are documented in two parts of this paper,
correspondingly. They can be roughly distinguished by the way discourse relations
were computed by the implemented system.

The first phase was dominated by the view that possible discourse relations (cf. [5])
between sentences in a coherent text (called “very short stories”, cf. [6]) can be derived
from a set of relevant linguistic features and can then act as hypotheses to be proven
with respect to other information available in that text and/or gained by additional
inferences. Computing discourse relations thus meant creating a space of possibilities
and then reducing that space to an adequate extent (“top-down approach”).

The second phase was characterized by the view that an underspecified represen-
tation of a text already codes this space of possible discourse relations (represented
by pertinent alternatives in UDRSes introduced by linguistic information). According
to this view it is the impact of both the presuppositional and assertional information
introduced by textual elements –together with the temporal constraints of extant tem-
poral information– that leads to direct but implicit pruning of the space (“bottom-up
approach”, cf. [4]). Computing discourse relations here meant having all possibilities
somehow available from the beginning and spending the main effort in disambiguation
(cf. [3]).

Common to both phases is the maxim to (only) take linguistic aspects as far as
possible into account and to ban world knowledge from all considerations (hence the
title of the chapter). The computation of discourse relations is therefore restricted to
a subset of all possible relations that can be derived from a set of relevant linguistic
features (essentially, tense, aspect, and aktionsart features) and does not include
discourse relations related to lexical items (e.g., sentence conjunctions like although).

From an implementation point of view the focus in phase 1 was on developping
a workbench for the correct prediction of possible discourse relations, given some
linguistic information of the text. The focus in phase 2 was on implementing a
system based on UDRSes that handles underspecified text interpretation. Both foci
somehow complement each other. As focussing always implies restrictions, however,
we would have needed much more time to fully integrate the results of both phases
into a general, working system.

Kai-Uwe Carstensen
www.kai-uwe-carstensen.de

150 Computing Discourse Relations on a Linguistic Basis

Part 1: ”Top-down approach”: A Workbench for the
explicit computation of Discourse Relations based on
Linguistic Features

1 Introduction

A general aim of computational text interpretation is the ability to process sequences
of sentences that are assumed to be coherent (“very short stories”, cf. [6]) and to
assign the correct (possible) discourse relations between text parts. The specific aim
of this project was to compute possible discourse relations implied by the texts on the
basis of a restricted set of linguistic features (e.g., tense, aspect, aktionsart) and to
represent them within the paradigm of underspecified semantics. In the first project
phase, this goal was restricted to building a workbench for handling discourse rules,
i.e. a set of mappings from linguistic features to discourse relations, and to using the
rules produced by/with the workbench for the representation of a complex discourse.

Figure 1

Figure 1 gives an overview of the system architecture we had in mind at the begin-
ning. An LFG-parser developed at the IMS extended by a semantics construction
component by Michael Schiehlen produces VITs (Verbmobil Interface Terms, cf. [1])
as output. The flat semantics coded by VITs are transformed into Extended VITs

Kai-Uwe Carstensen 151

(EVITs) by a Temporal Construction (TC) component that adds further information
gained from finer grained temporal analysis and lexical semantic representations. A
Discourse Construction (DC) component applies discourse rules to the EVITS. Its
output are Segmented UDRSes (SUDRSes) which constitute the representation of
the story (available for further inferences). However, as theoretical work on the un-
derspecified representation for text interpretation was still in progress, we simplified
this picture in phase 1 and concentrated on the workbench aspect. The resulting
system whose architecture is shown in Figure 2 does without, e.g., parsing and un-
derspecification (we come back to that in Part II). It focusses on finding the set of
discourse rules such that every coherent story made up of a subset of a (systematically
constructed) set of test sentences will be automatically given all and only its adequate
“story readings”(i.e., sequences of discourse relations).

Figure 2

The questions that are supposed to be answered are

• “Which discourse relations are to be assumed (given our somewhat restricted
interest in temporal phenomena)?”,

• “Which parameters (linguistic features) of the discourse rules are to be as-
sumed?”, and

• “Which discourse relations are implied by certain parameter constellations?”.

152 Computing Discourse Relations on a Linguistic Basis

They are answered by running a testsuite (i.e., applying the discourse rules to the
test sentences in a systematic way), by querying various aspects of the rules, or by
processing user selected stories (i.e., subsets of the test sentences).

2 Discourse relations

Three types of rhetorical relations figure as the most prominent discourse relations:
Continuation(e1, e2), Elaboration(e1, e2) and Explanation(e1, e2). Each of them
implies a specific temporal relation between the arguments. The first implies temporal
precedence, the second inclusion, and the third inverse precedence. We are interested
in the more fine grained set of coherence relations, however. The relations that are
currently used in the workbench (cf. [5]) are:

• ’ZERO’

• ’CAUSE/EFFECT’

• ’EFFECT/CAUSE’

• ’EFFECT/ADDCAUSE’

• ’CAUSE/RESPONSE’

• ’RESPONSE/CAUSE’

• ’FIG/BACKGROUND’

• ’BACKGROUND/FIG’

• ’FIG/FIG-BACKGROUND’

• ’MEANS/GOAL’

• ’GOAL/MEANS’

• ’GOAL/GOAL’

• ’MEANS/MEANS-GOAL’

• ’INTERFERED/INTERFERING’

An important aspect of coherence relations is the temporal relation corresponding to
them. The relationship between discourse and temporal relation is represented by the
following Prolog relation:

temporalRelationCorrespondingToDR(’CAUSE/EFFECT’(A,B),contains(A,B)):-
testsort(A,state),!.

temporalRelationCorrespondingToDR(’CAUSE/EFFECT’(A,B),precedes(A,B)).
temporalRelationCorrespondingToDR(’EFFECT/CAUSE’(A,B),precedes(B,A)):-

testsort(B,event).
temporalRelationCorrespondingToDR(’EFFECT/CAUSE’(A,B),contains(B,A)):-

testsort(B,state).
temporalRelationCorrespondingToDR(’CAUSE/RESPONSE’(A,B),contains(A,B)):-

testsort(A,state),!.
temporalRelationCorrespondingToDR(’CAUSE/RESPONSE’(A,B),precedes(A,B)).
temporalRelationCorrespondingToDR(’RESPONSE/CAUSE’(A,B),precedes(B,A)):-

testsort(B,event).
temporalRelationCorrespondingToDR(’RESPONSE/CAUSE’(A,B),contains(B,A)):-

testsort(B,state).
temporalRelationCorrespondingToDR(’FIG/FIGBACKGROUND’(A,B),anytemprel(A,B)).
temporalRelationCorrespondingToDR(’GOAL/MEANS’(A,B),contains(A,B)).

Kai-Uwe Carstensen 153

temporalRelationCorrespondingToDR(’MEANS/GOAL’(A,B),precedes(A,B)).
temporalRelationCorrespondingToDR(’GOAL/GOAL’(A,B),precedes(A,B)).
temporalRelationCorrespondingToDR(’INTERFERED/INTERFERING’(A,B),

overlaps_(A,B)).
temporalRelationCorrespondingToDR(’BACKGROUND/FIG’(A,B),contains(A,B)):-

testsort(A,state),testsort(B,event).
temporalRelationCorrespondingToDR(’FIG/BACKGROUND’(A,B),contains(B,A)).
temporalRelationCorrespondingToDR(’MEANS/MEANS-GOAL’(A,B),precedes(A,B)).
temporalRelationCorrespondingToDR(’ZERO’(A,B),anytemprel(A,B)).
temporalRelationCorrespondingToDR(’ENABLING/ENABLED’(A,B),contains(B,A)):-

testsort(A,event),testsort(B,state).
temporalRelationCorrespondingToDR(’EFFECT/ADDCAUSE’(A,B),precedes(B,A)):-

testsort(A,event),testsort(B,event).

testsort(s(_),state):-!.
testsort(s_res(_),state):-!.
testsort(ev(_),state):-!.
testsort(e(_),event):-!.
testsort(ev(_),event):-!.

In the paradigm of SUDRT, discourse relations are assumed to hold between nodes,
i.e., abstract referents for eventualities of sentences. Discourse relations are listed as
two-argument predicates, where the arguments are either the nodes A or B, or eventu-
ality functions of those nodes (remember that there might be more than one relevant
eventuality per node, like the event and the resultative state of a telic sentence, and
there might be a relation between a complex of nodes and another node).

Every SUDRS features both a set of anchor points (backward docking nodes) and
a set of open attachment points (forward docking nodes) as defining elements (cf.
[6]). More specifically, discourse relations always relate an attachment point with an
anchor point. There is a restriction on this, however: Each discourse relation does
not only verify the existence of two nodes to be related but may –according to its
role in discourse– even modify the set of attachment points. This is accounted for by
explicitly listing the operations associated with a discourse relation. The operations
are

addatt(NODE): add NODE to the set of attachment points
removeatt(NODE): remove NODE from the set of attachment points
clearatt: empty the set of attachment points
addgroupatt(LISTofNODES): create a complex node from LISTofNODES

and add it to the set of attachment points

The impact of a discourse relation on the set of attachment nodes is coded by the
following Prolog relation:

impactOfRelationOnNodes(’CAUSE/EFFECT’(A,B),[addatt(A),addatt(B)]):-
testsort(A,event), testsort(B,event),!.

impactOfRelationOnNodes(’CAUSE/EFFECT’(_A,B),[clearatt,addatt(B)]):-
testsort(B,state).

154 Computing Discourse Relations on a Linguistic Basis

impactOfRelationOnNodes(’CAUSE/EFFECT’(_A,B),[clearatt,addatt(B)]):-
testsort(B,event).

impactOfRelationOnNodes(’EFFECT/CAUSE’(A,_B),[clearatt,addatt(A)]).
impactOfRelationOnNodes(’CAUSE/RESPONSE’(A,B),[addatt(A),addatt(B)]):-

testsort(A,event), testsort(B,event),!.
impactOfRelationOnNodes(’CAUSE/RESPONSE’(_A,B),[clearatt,addatt(B)]):-

testsort(B,state).
impactOfRelationOnNodes(’CAUSE/RESPONSE’(_A,B),[clearatt,addatt(B)]):-

testsort(B,event).
impactOfRelationOnNodes(’RESPONSE/CAUSE’(A,_B),[clearatt,addatt(A)]).
impactOfRelationOnNodes(’FIG/FIG-BACKGROUND’(A,B),

[removeatt(A),addatt(B),addgroupatt([A,B])]).
impactOfRelationOnNodes(’GOAL/GOAL’(A,B),

[removeatt(A),addatt(B),addgroupatt([A,B])]).
impactOfRelationOnNodes(’GOAL/MEANS’(A,B),[clearatt,addatt(A),addatt(B)]).
impactOfRelationOnNodes(’MEANS/GOAL’(_A,B),[clearatt,addatt(B)]).
impactOfRelationOnNodes(’INTERFERED/INTERFERING’(_A,B),

[clearatt,addatt(B)]).
impactOfRelationOnNodes(’BACKGROUND/FIG’(_A,B),[clearatt,addatt(B)]).
impactOfRelationOnNodes(’FIG/BACKGROUND’(A,_B),[clearatt,addatt(A)]).
impactOfRelationOnNodes(’MEANS/MEANS-GOAL’(A,B),[removeatt(A),addatt(B)]).
impactOfRelationOnNodes(’ZERO’(A,B),[clearatt,addgroupatt([A,B])]).
impactOfRelationOnNodes(’ENABLING/ENABLED’(_A,B),[clearatt,addatt(B)]).
impactOfRelationOnNodes(’EFFECT/ADDCAUSE’(A,B),[clearatt,addatt(A)]):-

testsort(B,state).
impactOfRelationOnNodes(’EFFECT/ADDCAUSE’(A,B),

[clearatt,addgroupatt([A,B])]):-
testsort(B,event).

For the processing of stories it is furthermore necessary to know whether a story may
end, must end, or must not end with node B of a certain discourse relation. This
information about the closedness of a story is noted by the values ,poss‘, ,closed‘, and
,nil‘ of a corresponding feature coded by the following Prolog relation.

closednessOfStory(’CAUSE/EFFECT’(_A,_B),poss).
closednessOfStory(’EFFECT/CAUSE’(_A,_B),poss).
closednessOfStory(’CAUSE/RESPONSE’(_A,_B),poss).
closednessOfStory(’RESPONSE/CAUSE’(_A,_B),poss).
closednessOfStory(’FIG/FIG-BACKGROUND’(_A,_B),poss).
closednessOfStory(’GOAL/MEANS’(_A,_B),poss).
closednessOfStory(’GOAL/GOAL’(_A,_B),poss).
closednessOfStory(’MEANS/GOAL’(_A,_B),closed).
closednessOfStory(’INTERFERED/INTERFERING’(_A,_B),poss).
closednessOfStory(’BACKGROUND/FIG’(_A,_B),poss).
closednessOfStory(’FIG/BACKGROUND’(_A,_B),poss).
closednessOfStory(’MEANS/MEANS-GOAL’(_A,_B),nil).
closednessOfStory(’ZERO’(_A,_B),nil).

Kai-Uwe Carstensen 155

closednessOfStory(’ENABLING/ENABLED’(_A,_B),closed).
closednessOfStory(’EFFECT/ADDCAUSE’(_A,_B),closed).

3 Mapping Linguistic features to discourse relations:
Discourse rules

Discourse rules determine with which discourse relations two nodes A and B (i.e.,
either single sentences or groups of sentences, characterized by some relevant features)
can be combined. They are elements of P(F) x P(F) x P(DR), where F is a set of
features and DR is a set of discourse relations. Discourse rules are coded as lists of
lists. The features —implicitly referring to the corresponding node A or B —are the
following:

t(X): tense(s)= X ∈ {past,pres,fut }
perf: aspect(s)=perfective
state(X): eventuality(s)=X state

with X ∈ {lexical,progressive,result,habitual,generic}
event: eventuality(s)=event
telic: telic(s)
action(X): s denotes an action and the agent is X
instantaneous: the event of s is instantaneous (i.e., is an achievement sentence)
non-X: X does not hold

For example, the following rule

[[t(past),non-perf,state(lexical)],
[t(past),non-perf,state(lexical)],
[’ZERO’(s(A),s(B))]].

reads: “A possible discourse relation [in fact, the only possible one] between two non-
perfective sentences in the past both denoting a lexical state is the ZERO relation
between the states”. If there are more than one relations listed, then their order
reflects the “ranking”of applicability of the relations given the feature description.
In the following, a representative set of discourse rules is listed (a prettyprint of the
consulted discourse rules).

Rule 1:
[t(past),non-perf,state(lexical)]
[t(past),non-perf,state(lexical)]

-->[ZERO(s(_143),s(_141))]
Rule 2:

[t(past),non-perf,event,telic,non-action]
[t(past),non-perf,event,telic,non-action]

156 Computing Discourse Relations on a Linguistic Basis

-->[CAUSE/EFFECT(e(_844),e(_842)),FIG/FIG-BACKGROUND(e(_844),e(_842)),
ZERO(e(_844),e(_842))]

Rule 3:
[t(past),non-perf,event,telic,action(_1708)]
[t(past),non-perf,event,telic,action(_1708)]

-->[MEANS/GOAL(e(_1680),e(_1678)),GOAL/MEANS(e(_1680),e(_1678)),
MEANS/MEANS-GOAL(e(_1680),e(_1678)),
FIG/FIG-BACKGROUND(e(_1680),e(_1678))]

Rule 4:
[t(past),non-perf,event,telic,non-instantaneous,non-action]
[t(past),non-perf,event,telic,action(_2499)]

-->[CAUSE/RESPONSE(e(_2490),e(_2488)),
INTERFERED/INTERFERING(e(_2490),e(_2488)),
FIG/FIG-BACKGROUND(e(_2490),e(_2488)),ZERO(e(_2490),e(_2488))]

Rule 5:
[t(past),non-perf,event,telic,instantaneous,non-action]
[t(past),non-perf,event,telic,action(_3368)]

-->[CAUSE/RESPONSE(e(_3359),e(_3357)),
FIG/FIG-BACKGROUND(e(_3359),e(_3357)),ZERO(e(_3359),e(_3357))]

Rule 6:
[t(past),non-perf,event,telic,non-action]
[t(past),non-perf,event,non-telic,action(_4172)]

-->[CAUSE/RESPONSE(e(_4163),e(_4161)),
FIG/FIG-BACKGROUND(e(_4163),e(_4161)),ZERO(e(_4163),e(_4161))]

Rule 7:
[t(past),non-perf,event,telic,non-instantaneous,action(_5044)]
[t(past),non-perf,event,telic,action(_5025),not(_5044=_5025)]

-->[CAUSE/RESPONSE(e(_5009),e(_5007)),
INTERFERED/INTERFERING(e(_5009),e(_5007)),
FIG/FIG-BACKGROUND(e(_5009),e(_5007)),ZERO(e(_5009),e(_5007))]

Rule 8:
[t(past),non-perf,event,telic,instantaneous,action(_5937)]
[t(past),non-perf,event,telic,action(_5918),not(_5937=_5918)]

-->[CAUSE/RESPONSE(e(_5902),e(_5900)),
FIG/FIG-BACKGROUND(e(_5902),e(_5900)),ZERO(e(_5902),e(_5900))]

Rule 9:
[t(past),non-perf,event,telic,non-instantaneous,action(_6759)]
[t(past),non-perf,event,telic,non-action]

-->[CAUSE/EFFECT(e(_6730),e(_6728)),
INTERFERED/INTERFERING(e(_6730),e(_6728)),
FIG/FIG-BACKGROUND(e(_6730),e(_6728))]

Rule 10:
[t(past),non-perf,state(lexical)]
[t(past),non-perf,event,telic,action(_7571)]

-->[CAUSE/RESPONSE(s(_7562),e(_7560)),

Kai-Uwe Carstensen 157

BACKGROUND/FIG(s(_7562),e(_7560))]
Rule 11:

[t(past),non-perf,state(lexical)]
[t(past),non-perf,event,action(_8299)]

-->[BACKGROUND/FIG(s(_8290),e(_8288)),CAUSE/RESPONSE(s(_8290),e(_8288))]
Rule 12:

[t(past),non-perf,state(lexical)]
[t(past),non-perf,event,telic,non-action]

-->[CAUSE/EFFECT(s(_9014),e(_9012)),BACKGROUND/FIG(s(_9014),e(_9012))]
Rule 13:

[t(past),non-perf,event,telic,non-action]
[t(past),non-perf,state(lexical)]

-->[CAUSE/EFFECT(e(_9778),s(_9776)),EFFECT/CAUSE(e(_9778),s(_9776)),
FIG/BACKGROUND(e(_9778),s(_9776))]

Rule 14:
[t(past),non-perf,event,telic,non-action]
[t(past),non-perf,event,non-telic,non-action]

-->[CAUSE/EFFECT(e(_10570),e(_10568)),
FIG/BACKGROUND(e(_10570),e(_10568)),
FIG/FIG-BACKGROUND(e(_10570),e(_10568))]

Rule 15:
[t(past),non-perf,event,non-telic,non-action]
[t(past),non-perf,event,telic,non-action]

-->[CAUSE/EFFECT(e(_11425),e(_11423)),
BACKGROUND/FIG(e(_11425),e(_11423))]

Rule 16:
[t(past),non-perf,event,non-telic,non-action]
[t(past),non-perf,event,non-telic,non-action]

-->[CAUSE/EFFECT(e(_12252),e(_12250)),
FIG/FIG-BACKGROUND(e(_12252),e(_12250))]

Rule 17:
[t(past),non-perf,event,non-telic,action(_13145)]
[t(past),non-perf,event,telic,non-action]

-->[CAUSE/EFFECT(e(_13116),e(_13114)),
BACKGROUND/FIG(e(_13116),e(_13114))]

Rule 18:
[t(past),non-perf,event,telic,action(_13948)]
[t(past),non-perf,event,non-telic,non-action]

-->[CAUSE/EFFECT(e(_13916),e(_13914)),
INTERFERED/INTERFERING(e(_13916),e(_13914))]

Rule 19:
[t(past),non-perf,event,non-telic,action(_14763)]
[t(past),non-perf,event,non-telic,action(_14741),
not(_14763=_14741)]

-->[CAUSE/RESPONSE(e(_14725),e(_14723)),

158 Computing Discourse Relations on a Linguistic Basis

FIG/FIG-BACKGROUND(e(_14725),e(_14723)),ZERO(e(_14725),e(_14723))]
Rule 20:

[t(past),non-perf,event,non-telic,action(_15654)]
[t(past),non-perf,event,non-telic,action(_15654)]

-->[GOAL/MEANS(e(_15623),e(_15621)),
MEANS/MEANS-GOAL(e(_15623),e(_15621)),
GOAL/GOAL(e(_15623),e(_15621))]

Rule 21:
[t(pres),perf,event,telic,non-action]
[t(pres),perf,event,telic,non-action]

-->[CAUSE/EFFECT(e(_16479),s_res(_16477)),
EFFECT/CAUSE(e(_16479),e(_16477)),
FIG-FIG/BACKGROUND(e(_16479),e(_16477)),
ZERO(s_res(_16479),s_res(_16477))]

Rule 22:
[t(pres),perf,event,telic,action(_17308)]
[t(pres),perf,event,telic,action(_17308)]

-->[BACKGROUND(n,s_res(_17283)),BACKGROUND(n,s_res(_17283)),
CAUSE/RESPONSE(e(_17269),s_res(_17283)),
RESPONSE/CAUSE(e(_17269),e(_17283)),
FIG-FIG/BACKGROUND(e(_17269),e(_17283)),
ZERO(s_res(_17269),s_res(_17283))]

Rule 23:
[t(past),event,telic,non-action]
[t(past),perf,event]

-->[BACKGROUND(t,s_res(_18048)),EFFECT/CAUSE(e(_18041),e(_18048)),
FIG/BACKGROUND(e(_18041),s_res(_18048))]

Rule 24:
[t(past),perf,event,telic,non-action]
[t(past),perf,event,non-telic,action(_18735)]

-->[CAUSE/RESPONSE(e(_18726),e(_18724))]
Rule 25:

[t(past),event,telic,action(_19456)]
[t(past),perf,event,telic,action(_19456)]

-->[BACKGROUND(t,s_res(_19431)),MEANS/MEANS-GOAL(e(_19424),e(_19431)),
FIG/BACKGROUND(e(_19424),s_res(_19431))]

Rule 26:
[t(past),perf,event,non-action]
[t(past),event,non-telic,action(_20118)]

-->[CAUSE/RESPONSE(s_res(_20109),e(_20107)),
BACKGROUND/FIG(s_res(_20109),e(_20107))]

Rule 27:
[t(past),perf,event,telic,non-action]
[t(past),perf,event,telic,instantaneous,non-action]

-->[CAUSE/EFFECT(e(_20836),e(_20834)),

Kai-Uwe Carstensen 159

EFFECT/CAUSE(e(_20836),e(_20834)),BACKGROUND(e(_20836),e(_20834))]
Rule 28:

[t(past),perf,event,telic,action(_21632)]
[t(past),perf,event,telic,non-instantaneous,action(_21611)]

-->[GOAL/MEANS(e(_21602),e(_21600)),MEANS/GOAL(e(_21602),e(_21600)),
MEANS/MEANS-GOAL(e(_21602),e(_21600)),
FIG/FIG-BACKGROUND(e(_21602),e(_21600))]

Rule 29:
[t(past),perf,event,telic,non-action]
[t(past),non-perf,event,telic,instantaneous,non-action]

-->[CAUSE/EFFECT(e(_22370),e(_22368)),EFFECT/CAUSE(e(_22370),e(_22368)),
FIG-FIG/BACKGROUND(e(_22370),e(_22368))]

Rule 30:
[t(past),non-perf,event,non-telic,non-action]
[t(past),perf,event,telic]

-->[EFFECT/CAUSE(e(_23146),e(_23144))]
Rule 31:

[t(past),complex]
[t(past),state(lexical)]

-->[CAUSE/EFFECT(complex(_23858),s(_23856))]
Rule 32:

[t(past),complex]
[t(past),event,non-action]

-->[CAUSE/EFFECT(complex(_24449),e(_24447))]
Rule 33:

[t(past),complex]
[t(past),event,action(_25080)]

-->[CAUSE/RESPONSE(complex(_25071),e(_25069))]

4 Test sentences

For test sentences to be available for the DR-workbench, they must be manually
entered into a corresponding file. The format is ,[Char,String,List].‘ where Char is an
token identifier distinguishing between sentences with the same feature description
type, String is the test sentence, and List is an element of P(F) describing String.
The following are sample entries:

[a,’Es war kalt’,[t(past),state(lexical)]].
[b,’Der Mann war wuetend’,[t(past),state(lexical)]].
[c,’Die ganze Bevoelkerung war vor dem Rathaus versammelt’,

[t(past),state(lexical)]].
[a,’Es ist kalt gewesen’,[t(pres),perf,state(lexical)]].
[b,’Der Mann ist wuetend gewesen’,[t(pres),perf,state(lexical)]].

Note that, different from the specification of the feature descriptions in the discourse
rules, features missing in List are interpreted as negatively valued.

160 Computing Discourse Relations on a Linguistic Basis

5 The workbench

By looking at the discourse rules as defined by the linguist it becomes immediately
obvious that it is difficult to keep the overview with respect to the correctness and
completeness of the rule set. This gave rise to the idea of implementing a workbench
that offers tools for improving the quality according to these criteria. The currently
implemented procedures concern

• listings (of test sentences and discourse rules)

• search for relations (in which rules does a certain relation appear?)

• qualitative search (which rules match a certain feature pattern?)

• similarity (which rules are similar to a certain one?)

• information about rules (possible subsumption relation to other rules)

• generalization of rules (can the rules in which a certain relation appears be
generalized?).

By consulting the test suite, the test sentences and discourse rules are compiled and
made available for the workbench. Both are numbered such that they can be uniquely
addressed for rule queries and story processing.

Listings. The command drlist lists all discourse rules. The command tslist enumer-
ates all test sentences by adding the internal unique numerical identifier:

[1,a,Es war kalt,[t(past),state(lexical)]]
[2,b,Der Mann war wtend,[t(past),state(lexical)]]
[3,c,Die ganze Bevoelkerung war vor dem Rathaus versammelt,

[t(past),state(lexical)]]
[4,a,Es ist kalt gewesen,[t(pres),perf,state(lexical)]]
[5,b,Der Mann ist wuetend gewesen,[t(pres),perf,state(lexical)]]
[6,a,Es war kalt gewesen,[t(past),perf,state(lexical)]]
[7,b,Der Mann war wuetend gewesen,[t(past),perf,state(lexical)]]
[8,a,Das Ding machte Geraeusche,[t(past),event]]
[9,b,Der Mann laechelte,[t(past),event]]
[10,a,Das Ding hat Geraeusche gemacht,[t(pres),perf,event]]
[11,b,Der Mann hat gelaechelt,[t(pres),perf,event]]
[12,a,Das Ding hatte Geraeusche gemacht,[t(past),perf,event]]
[13,b,Der Mann hatte gelaechelt,[t(past),perf,event]]
[14,a,Maria rannte,[t(past),event,action(Maria)]]
[15,b,Peter dachte angestrengt nach,[t(past),event,action(Peter)]]
[16,a,Paul laechelte freundlich,[t(past),event,action(Paul)]]
[17,b,Paul dachte angestrengt nach,[t(past),event,action(Paul)]]
[18,c,Die Maenner schrien,[t(past),event,action(Die Mnner)]]
[19,d,Die Frauen weinten,[t(past),event,action(Die Frauen)]]
[20,e,Die Soldaten schossen in die Luft,[t(past),event,action(Die Soldaten)]]
[21,a,Peter hat freundlich gelaechelt,[t(pres),perf,event,action(Peter)]]

Kai-Uwe Carstensen 161

[22,b,Peter hat angestrengt nachgedacht,[t(pres),perf,event,action(Peter)]]
[23,a,Paul hat freundlich gelaechelt,[t(pres),perf,event,action(Paul)]]
[24,b,Paul hat angestrengt nachgedacht,[t(pres),perf,event,action(Paul)]]
[25,a,Peter hatte freundlich gelaechelt,[t(past),perf,event,action(Peter)]]
[26,b,Peter hatte angestrengt nachgedacht,[t(past),perf,event,action(Peter)]]
[27,a,Paul hatte freundlich gelaechelt,[t(past),perf,event,action(Paul)]]
[28,b,Paul hatte angestrengt nachgedacht,[t(past),perf,event,action(Paul)]]
[29,a,Die Sonne ging unter,[t(past),event,telic]]
[30,b,Der Mann wurde wuetend,[t(past),event,telic]]
[31,c,Die Whisky-Flasche rollte vom Tisch herunter,[t(past),event,telic]]
[32,d,Adrenalin scho in seinen Krper,[t(past),event,telic]]
[33,a,Es ist kalt geworden,[t(pres),perf,event,telic]]
[34,b,Der Mann ist wuetend geworden,[t(pres),perf,event,telic]]
[35,a,Es war kalt geworden,[t(past),perf,event,telic]]
[36,b,Der Mann war wuetend geworden,[t(past),perf,event,telic]]
[37,a,Maria erreichte die Bushaltestelle,

[t(past),event,instantaneous,telic,action(Maria)]]
[38,b,Peter lief los,[t(past),event,instantaneous,telic,action(Peter)]]
[39,a,Maria ging zur Bushaltestelle,[t(past),event,telic,action(Maria)]]
[40,b,Der Mann fing die Flasche auf,[t(past),event,telic,action(Mann)]]
[41,c,Verrgert rief er nach einer neuen Flasche,

[t(past),event,telic,action(_110)]]
[42,a,Peter ist losgelaufen,

[t(pres),perf,event,instantaneous,telic,action(Peter)]]
[43,b,Peter hat sich gesetzt,[t(pres),perf,event,telic,action(Peter)]]
[44,a,Paul ist losgelaufen,

[t(pres),perf,event,instantaneous,telic,action(Paul)]]
[45,b,Paul hat sich gesetzt,[t(pres),perf,event,telic,action(Paul)]]
[46,a,Peter war losgelaufen,

[t(past),perf,event,instantaneous,telic,action(Peter)]]
[47,b,Peter hatte sich gesetzt,[t(past),perf,event,telic,action(Peter)]]
[48,a,Paul war losgelaufen,

[t(past),perf,event,instantaneous,telic,action(Paul)]]
[49,b,Paul hatte sich gesetzt,[t(past),perf,event,telic,action(Paul)]]
[50,a,Der Bus ist gekommen,[t(pres),perf,event,telic]]
[51,b,Die Bahn ist weggefahren,[t(pres),perf,event,telic]]
[52,a,Der Bus war gekommen,[t(past),perf,event,telic]]
[53,b,Die Bahn war weggefahren,[t(past),perf,event,telic]]
[54,a,Es fing an zu regnen,[t(past),event,telic,instantaneous]]
[55,b,Die Bahn fuhr ab,[t(past),event,telic,instantaneous]]
[56,c,Die Fensterscheibe zerbarst,[t(past),event,telic,instantaneous]]
[57,a,Es hat angefangen zu regnen,[t(pres),perf,event,telic,instantaneous]]
[58,b,Die Bahn ist abgefahren,[t(pres),perf,event,telic,instantaneous]]
[59,a,Es hatte angefangen zu regnen,[t(past),perf,event,telic,instantaneous]]
[60,b,Die Bahn war abgefahren,[t(past),perf,event,telic,instantaneous]]

Search for relations. The procedure occursWhere(DR-SUBSTRING) collects all dis-
course rules that contain discourse relations matching DR-SUBSTRING:

| ?- occursWhere(’Interf’).

162 Computing Discourse Relations on a Linguistic Basis

Rules found: [4,7,9,18]
Want to view them? (Return)

Rule 4:
[t(past),non-perf,event,telic,non-instantaneous,non-action]
[t(past),non-perf,event,telic,action(_1223)]
[CAUSE/RESPONSE(e(_1214),e(_1212)),INTERFERED/INTERFERING(e(_1214),
e(_1212), FIG/FIG-BACKGROUND(e(_1214),e(_1212)),ZERO(e(_1214),e(_1212))]

Rule 7:
[t(past),non-perf,event,telic,non-instantaneous,action(_2103)]
[t(past),non-perf,event,telic,action(_2084),not(_2103=_2084)]
[CAUSE/RESPONSE(e(_2068),e(_2066)),INTERFERED/INTERFERING(e(_2068),
e(_2066), FIG/FIG-BACKGROUND(e(_2068),e(_2066)),ZERO(e(_2068),e(_2066))]
.
.
.

Qualitative Search. The procedure drmatch/[1,2] collects all discourse rules that
contain discourse relations matching its feature description arguments (in the single-
argument version, only matches with the FD of node A are performed):

| ?- drmatch([non-perf,instantaneous]).

Rule 5:
[t(past),non-perf,event,telic,instantaneous,non-action]
[t(past),non-perf,event,telic,action(_334)]
[CAUSE/RESPONSE(e(_325),e(_323)),FIG/FIG-BACKGROUND(e(_325),e(_323)),
ZERO(e(_325),e(_323))]

Rule 8:
[t(past),non-perf,event,telic,instantaneous,action(_366)]
[t(past),non-perf,event,telic,action(_347),not(_366=_347)]
[CAUSE/RESPONSE(e(_331),e(_329)),FIG/FIG-BACKGROUND(e(_331),e(_329)),
ZERO(e(_331),e(_329))]

| ?- drmatch([state(lexical)],[event,action(_)]).

Rule 10:
[t(past),non-perf,state(lexical)]
[t(past),non-perf,event,telic,action(_353)]
[CAUSE/RESPONSE(s(_344),e(_342)),BACKGROUND/FIG(s(_344),e(_342))]

Rule 11:
[t(past),non-perf,state(lexical)]
[t(past),non-perf,event,action(_333)]
[BACKGROUND/FIG(s(_324),e(_322))]

Similarity. It might be interesting to know which rules are similar to a certain rule
and to get the results in increasing distance. This functionality is provided by the
procedure nearRules(RuleID)which is based on the computation of distance between
rules at compile time. It presents the results in qualitative steps:

Kai-Uwe Carstensen 163

| ?- nearRules(18).

Rule 18:

[t(past),non-perf,event,telic,action(_223)]
[t(past),non-perf,event,non-telic,non-action]
[CAUSE/EFFECT(e(_191),e(_189)),INTERFERED/INTERFERING(e(_191),e(_189))]

Rule distance value: 2:

Rule 14:
[t(past),non-perf,event,telic,non-action]
[t(past),non-perf,event,non-telic,non-action]
[CAUSE/EFFECT(e(_1427),e(_1425)),FIG/BACKGROUND(e(_1427),e(_1425)),
FIG/FIG-BACKGROUND(e(_1427),e(_1425))]

More distant rules? (Return)
|:

Rule distance value: 3:

Rule 9:
[t(past),non-perf,event,telic,non-instantaneous,action(_1482)]
[t(past),non-perf,event,telic,non-action]
[CAUSE/EFFECT(e(_1453),e(_1451)),INTERFERED/INTERFERING(e(_1453),
e(_1451)), FIG/FIG-BACKGROUND(e(_1453),e(_1451))]

More distant rules? (Return)
|:

Information about rules. The procedure drinfo(RuleID) prints the rule identified by
RuleID (the numerical identifier) and in addition shows subsumption information wrt.
other rules, which is provided by the computation of subsumption relations between
the first feature descriptions of rules at compile time:

| ?- drinfo(23).

[23,[t(past),event,telic,non-action],

[t(past),perf,event],
[BACKGROUND(t,s_res(_182)),EFFECT/CAUSE(e(_175),e(_182)),
FIG/BACKGROUND(e(_175),s_res(_182))]]

subsumes:
-[24,[t(past),perf,event,telic,non-action],

[t(past),perf,event,non-telic,action(_160)],
[CAUSE/RESPONSE(e(_151),e(_149))]]

Automatic Generalization of rules. Sometimes it might be interesting to get automatic
proposals for generalizations of a set of rules in which a certain discourse relation

164 Computing Discourse Relations on a Linguistic Basis

appears by looking at the generalizations of increasingly smaller subsets of this set.
This functionality is provided by the procedure msg(DR):

| ?- msg(’EFFECT/CAUSE’).

Rules found: [13,21,23,27,29,30]
Considering rules [13,21,23,27,29,30]
Considering rules [21,23,27,29,30]

Generalized rule: [event,non-action] & [event] -> !!!
Want more proposals? (Return)

Considering rules [13,23,27,29,30]

Generalized rule: [event,t(past),non-action] & [t(past)] -> !!!
Want more proposals? (Return)

Considering rules [13,21,27,29,30]
Considering rules [13,21,23,29,30]
Considering rules [13,21,23,27,30]
Considering rules [13,21,23,27,29]
Considering rules [23,27,29,30]

Generalized rule: [event,t(past),non-action] & [event,t(past)] -> !!!
Want more proposals? (Return)

Considering rules [21,27,29,30]

Generalized rule: [event,non-action] & [event,telic] -> !!!
Want more proposals? (Return)

5.1 Running the testsuite

In order to get a quick overview where the holes and/or bugs of the discourse rules
might be, an automatic application of the discourse rules on the test sentences may
be performed. To do this, the corresponding procedure iteratively tries to apply the
rules to each test sentence pair with different token identifier and outputs the results
in the following form (all possible rule applications are listed):

Es war kalt. (1. Satz)

1 ---- Der Mann war wuetend.
ZERO(s(_886),s(_884)) (Rule 1)

2 ---- Die ganze Bevoelkerung war vor dem Rathaus versammelt.
ZERO(s(_886),s(_884)) (Rule 1)

3 ---- Der Mann war wuetend gewesen.
4 ---- Der Mann laechelte.
5 ---- Der Mann hatte gelaechelt.

Kai-Uwe Carstensen 165

6 ---- Peter dachte angestrengt nach.
BACKGROUND/FIG(s(_897),e(_895)) (Rule 11)

7 ---- Paul dachte angestrengt nach.
BACKGROUND/FIG(s(_897),e(_895)) (Rule 11)

8 ---- Die Maenner schrien.
BACKGROUND/FIG(s(_897),e(_895)) (Rule 11)

9 ---- Die Frauen weinten.
BACKGROUND/FIG(s(_897),e(_895)) (Rule 11)

10 --- Die Soldaten schossen in die Luft.
BACKGROUND/FIG(s(_897),e(_895)) (Rule 11)

11 --- Peter hatte angestrengt nachgedacht.
12 --- Paul hatte angestrengt nachgedacht.
13 --- Der Mann wurde wuetend.

CAUSE/EFFECT(s(_895),e(_893)) (Rule 12)
BACKGROUND/FIG(s(_895),e(_893)) (Rule 12)

14 --- Die Whisky-Flasche rollte vom Tisch herunter.
CAUSE/EFFECT(s(_895),e(_893)) (Rule 12)
BACKGROUND/FIG(s(_895),e(_893)) (Rule 12)

15 --- Adrenalin scho in seinen Krper.
CAUSE/EFFECT(s(_895),e(_893)) (Rule 12)
BACKGROUND/FIG(s(_895),e(_893)) (Rule 12)

16 --- Der Mann war wuetend geworden.
17 --- Peter lief los.

BACKGROUND/FIG(s(_901),e(_899)) (Rule 10)
BACKGROUND/FIG(s(_901),e(_899)) (Rule 11)

18 --- Der Mann fing die Flasche auf.
BACKGROUND/FIG(s(_899),e(_897)) (Rule 10)
BACKGROUND/FIG(s(_899),e(_897)) (Rule 11)

19 --- Verrgert rief er nach einer neuen Flasche.
BACKGROUND/FIG(s(_899),e(_897)) (Rule 10)
BACKGROUND/FIG(s(_899),e(_897)) (Rule 11)

20 --- Peter hatte sich gesetzt.
21 --- Paul hatte sich gesetzt.
22 --- Die Bahn war weggefahren.
23 --- Die Bahn fuhr ab.

CAUSE/EFFECT(s(_897),e(_895)) (Rule 12)
BACKGROUND/FIG(s(_897),e(_895)) (Rule 12)

24 --- Die Fensterscheibe zerbarst.
CAUSE/EFFECT(s(_897),e(_895)) (Rule 12)
BACKGROUND/FIG(s(_897),e(_895)) (Rule 12)

25 --- Die Bahn war abgefahren.
.
.
.

5.2 Processing stories

Yet another method of verifying completeness and correctness of the discourse rules
is to process meaningful sequences of test sentences and see whether the results agree

166 Computing Discourse Relations on a Linguistic Basis

with theoretical assumptions. This requires a more elaborated environment which
implements SUDRSes with anchor and attachment points and in which the impact of
discourse relations on attachment points as well as the constraints on the closedness
of a story are respected (cf. [6]).

The main predicate, stories(ListOfSentences), provides this functionality. Its
basis is a representation of a discourse as a set of SUDRSes, where each SUDRS is a
six-argument Prolog term

sudrs(AnchorNodes,Relations,AttachmentNodes,FeaturesOfSentence,
TemporalFeatures,Closedness).

The main program structure for stories is the following:

stories([],D):-
!,
outputStories(D).

stories([N|R],D):-
processNewSentence(N,Sudrs,D),
determineRelationToDiscourse(Sudrs,D),!,
stories(R,D).

Recursively, each of the specified sentences is processed by retrieving the features of
a test sentence N, building new nodes for each of the involved eventualities, creat-
ing a new Sudrs and filling its arguments with the pertinent information, and then
determining the relation of this Sudrs with the previous discourse.

Due to the possibly destructive operations on the set of attachment points, an
Sudrs cannot underspecify the possible developments of the discourse. Therefore,
each Sudrs can only code a single discourse history, accumulating the nodes and
relations on that line. A discourse is then a tree with Sudrses as nodes, whose leafs
are either expanded or deleted, depending on the possibility to anchor a node of the
following sentence. The output of the stories is simply a traversal of this tree from
root to leaves printing out the discourse relation on the way. Here is an example of
story processing:

| ?- stories([29,30,15]).

Die Sonne ging unter. Der Mann wurde wuetend. Peter dachte angestrengt nach.

Possible story 1:

ZERO(e(n1),e(n2))
CAUSE/RESPONSE(complex([e(n1),e(n2)]),e(n3))

Possible story 2:

FIG/FIG-BACKGROUND(e(n1),e(n2))

Kai-Uwe Carstensen 167

FIG/FIG-BACKGROUND(e(n2),e(n3))

Possible story 3:

FIG/FIG-BACKGROUND(e(n1),e(n2))
CAUSE/RESPONSE(e(n2),e(n3))

Possible story 4:

FIG/FIG-BACKGROUND(e(n1),e(n2))
CAUSE/RESPONSE(complex([e(n1),e(n2)]),e(n3))

Possible story 5:

CAUSE/EFFECT(e(n1),e(n2))
FIG/FIG-BACKGROUND(e(n2),e(n3))

Possible story 6:

CAUSE/EFFECT(e(n1),e(n2))
FIG/FIG-BACKGROUND(e(n1),e(n3))

Possible story 7:

CAUSE/EFFECT(e(n1),e(n2))
CAUSE/RESPONSE(e(n2),e(n3))

Possible story 8:

CAUSE/EFFECT(e(n1),e(n2))
CAUSE/RESPONSE(e(n1),e(n3))

After having found an adequate set of discourse rules, the method for story pro-
cessing presented here could have been easily integrated into the system architecture
depicted in Figure 1. By simply changing from test sentences to EVITs in process-
NewSentence, the results could have been used as hypotheses to be proven by the
system (be they underspecified or not). We did not continue this line of research,
however, but switched to the bottom-up view in order to investigate what exactly is
involved in disambiguating ambiguous underspecified text representations.

168 Computing Discourse Relations on a Linguistic Basis

Part II: “Bottom-up approach”: Implementing text
interpretation with underspecification and comput-
ing discourse relations implicitly

6 Introduction

We discontinued the approach presented in Part I because it turned out that, at
that time, there was enough theoretical knowledge at hand to try to implement an
integrated, bottom-up approach to text interpretation during the last six months of
the project. With theoretical work still going on, this proved to be an interesting
enterprise.

Although text interpretation effectively requires a full natural language processing
system, we were interested in a restricted set of phenomena only. We therefore made
some shortcuts with respect to the generality of the treatment of other phenomena
that will be marked accordingly. As we could use the LFG parser developed at the IMS
and the semantic construction module created by Michael Schiehlen, things turned
out to be quite manageable.

In addition to that, we cut back on the generality of treating discourse relations:
Our primary goal became the implementation of the “Busbeispiel”, the classic example
of discussions in the project and topic of the meticulous theoretical analysis in [3].

7 Overview

The blueprint for the system dealing with temporal underspecification in discourse
(cf. [3]) presented here is shown in Figure 3 (which is only superficially similar to
the one shown in Figure 1). Parsed input sentences are extended by a flat compo-
sitional semantics resulting in VITs. These are input to the temporal construction
(TC) component that enriches them with finer grained (temporal and lexical) seman-
tic information (cf. [7]). The TC component passes instances of an interface format
(“Interface Format Structures”, IFSes) to the discourse construction (DC) compo-
nent, which adds Internal UDRSes (IUDRSes) to an underspecified representation of
the text (i.e, of the “very short story”). It is the central issue of our approach that,
although ambiguous and underspecified representations of the single sentences accu-
mulate, ambiguity and underspecification of the whole text is systematically reduced
by various factors during discourse processing, among them presupposition justifi-
cation, the resolution of temporal constraints, and the application of interpretation
principles.

Kai-Uwe Carstensen 169

Sentence1…Sentencen
Parser
+SC

VIT Tense,
Aspect,

Aktionsart,
Semantic
Lexicon

DC

Underspecified
representation

of the story

IUDRS

Presupposition
justification

Application of
Interpretation principles

Temporal constraint resolution

TC

IFS

Figure 3

8 Decisions made for a system implementing un-
derspecified text interpretation

There were a lot of general decisions regarding algorithms and data structures we had
to come to at the beginning. The first concerned the question of how to represent
discourse information as opposed to information contained in single sentences. Note
that VITs were designed to code sentence information and that this meant encapsula-
tion of data one would have rather had easily available for discourse procedures. We
therefore decided to use pure Prolog for coding discourse information and to compile
the information contained in the VITs into corresponding Prolog predicates (“Internal

170 Computing Discourse Relations on a Linguistic Basis

UDRSes”, IUDRSes).
Another decision concerned the question of when and how to expand or transform

the VIT in the course of integrating temporal and decompositional lexical semantic
information. We soon dismissed the possibility of changing the VITs with and within
the VIT formalism as this proved to be too inflexible for our purposes. Instead we
developed an own rule-based mechanism for building enriched UDRSes out of VITs (as
described in Saric, this volume). At the same time we specified a format for interface
structures (IFS) between TC and DC because these components were developped
separately and in parallel. Note in passing that we did not deal with aspects of
segmented discourse (that is, with SUDRSes) in phase 2.

Within the paradigm of underspecification, it is nothing but common to stay
monotonic as far as possible. Although there is a distinction between secure and
ambiguous information (cf. [3]), even the latter (by making alternatives explicit)
can be treated declaratively. We decided that all indefeasible information was to be
implemented by way of assertion to the Prolog database. What is straightforward
in the case of lexical ambiguity, however, is less clear in the case of, say, choices of
antecedents for anaphora. Although one could perhaps collect alternative antecedents,
represent the resulting ambiguity declaratively and so postpone choice until a later
point of time (as is done in [8]) we opted for treating these cases defeasibly and for
implementing this with Prolog backtracking.

As to presupposition and anaphora, we noted their similarity (in the tradition
of van der Sandt, cf. [9]) and implemented them with the same mechanism. Both
require finding adequate antecedents in discourse. They are dissimilar, however, in
that only presuppositions can be justified by inferences. By distinguishing features
and conditions in the implementation, we could capture this distinction quite nat-
urally: Only proofs of conditions can give rise to the triggering of inferences, but
only presuppositions can have conditions. Besides that, we chose to implement only
a simplified version of handling presuppositions and anaphora, and disregarded, e.g.,
sophisticated aspects of the choice between different accommodation sites, of bridging,
and of centering theory.

Concerning the representation and processing of ambiguities, one has to ensure
that, after having made a choice wrt. a certain ambiguity, only the selected disjunct
will be available for further processing. We therefore chose to use a context mechanism
which names each alternative (with a context variable), stores the relation of content
and its licensing context, and performs a bookkeeping of current context variables
that only admits licensed content during story processing.

With respect to theorem proving we took the pragmatic approach of implementing
the proofs we needed instead of using or implementing a general theorem prover.

9 Discourse construction

9.1 Interface format structures (IFSes)

We used interface format structures as a bridge between TC and DC because the rule
mechanism for transforming VITs and the discourse processing mechanism operate

Kai-Uwe Carstensen 171

on different data structures (and were developped in parallel, as mentioned before).
IFSes represent a sentence’s (or node’s) UDRS as known from the literature but in
addition contain presuppositional, ambiguity and feature information.

All DRSes are marked (with “P-Marker”) as to whether they represent assertional
(“a”) or presuppositional (p(Label)) information. In the latter case, the Label points
to the DRS the presuppositional DRS is attached to.

Unlike the coding of a DRS’s universe in VITs, discourse referents introduced by
a DRS are not only explicitly listed, but there is also an additional slot for their
(linguistic) features. Features are different from conditions in that they are string-
valued.

On the level of IFSes, ambiguity information is represented as exclusive disjunction

of DRSes corresponding to the ambiguity operator ‘
!
∨’of Reyle/Roßdeutscher ([3]).

Each disjunction is coded as a list of lists of equations between label variables and
labels.

The following Backus-Naur form describes IFSes:

IFS ::= "node(" NodeId "," UDRS ")"
NodeId ::= Identifier for Nodes
UDRS ::= "udrs(" DRSList "," CONSTRAINTS "," AMBIGUITIES ")"
DRSList ::= List of LabelledDRS
LabelledDRS ::= Label ":" DRS
Label ::= Identifier for DRSes
DRS ::= "drs(" P-Marker "," UNIVERSE "," CONDITIONS ")"
P-Marker ::= "p(" Label ")" | "a"
UNIVERSE ::= "[" DRefs "," FEATURES "]"
DRefs ::= List of DRefId
DRefId ::= Identifier for discourse referents
FEATURES ::= List of FEATURE
FEATURE ::= FeatureName "(" FARG "," FVAL ")"
FeatureName ::= {sort, gend, num, ...}
FARG ::= DRefId
FVAL ::= String
CONDITIONS ::= List of CONDITION
CONDITION ::= ConditionName "(" CONDARGS")"
ConditionName ::= {move, precedes, ...}
CONDARGS ::= CONDARG "," CONDARGS
CONDARGS ::= CONDARG
CONDARG ::= DRefId | Label
CONSTRAINTS ::= List of CONSTRAINT
CONSTRAINT ::= ConstraintName1 "(" CONSTARG ")" |

ConstraintName2 "(" CONSTARG "," CONSTARG ")"
ConstraintName1 ::= {toplabel, bottomlabel}
ConstraintName2 ::= {leq, eq, less}
CONSTARG ::= Label | LabelVar
LabelVar ::= Variable ranging over Label
AMBIGUITIES ::= List of XOR
XOR ::= "xor(" LLVA ")"
LLVA ::= List of LVA

172 Computing Discourse Relations on a Linguistic Basis

LVA ::= List of VAREQUATION
VAREQUATION ::= LabelVar "=" Label

The corresponding abstract pattern of an IFS is this:

node(N,
udrs([%DRSes

Label:drs(P-MARKER, %Marker for assertion/presupposition
[%Universe
[...], %Discourse referents
[...] %Features
],
[...] %Conditions

)
.
.
.

],
[...], %Constraints
[...] %Ambiguity information
)

).

Within an IFS, identifiers for discourse referents and labels can be named arbitraryly
as they will be renamed during the construction of IUDRSes. The following shows
the IFS for the sentence “Maria geht zum Bahnhof. (Maria walks to the railway
station.)”.1

node(1,
udrs([l1:drs(a,

[[],
[]],
[decl(l012)]),

l2:drs(a,
[[],
[]],
[]),

l3:drs(p(l4),
[[bh],
[sort(bh,location),gend(bh,masc), num(bh,sg)]],
[bahnhof(bh)]),

l4:drs(a,
[[],
[]],
[]),

1Observe that we make heavy use of additional, reificational arguments of the predicates of DRS
conditions (i.e., even of the temporal ones). At least from an implementational point of view, this is
important, as it allows us to easily access conditions of a specific type by checking the sorts of these
arguments. See the subsection on proving temporal theorems below for more on this topic (and for
a detailed characterization of the temporal relations used).

Kai-Uwe Carstensen 173

l5:drs(p(l6),
[[m],
[sort(m,person),gend(m,fem)]],
[]),

l6:drs(a,
[[],
[]],
[]),

l7:drs(a,
[[],
[named(m,"maria")]],
[]),

l8:drs(p(l10),
[[s1pr],
[sort(s1pr,state)]],
[’NEG’(l89)]),

l9:drs(a,
[[],
[]],
[’AT’(s1pr,m,bh)]),

l10:drs(a,
[[s,e1,t1,t2,c1,n,tr1,tr2,tr3,tr4,tr5,tr6],
[sort(s,state),sort(e1,event), sort(t1,tt),
sort(t2,tf), sort(c1,cut),sort(n,now),
sort(tr1,temprel), sort(tr2,temprel),
sort(tr3,temprel), sort(tr4,temprel),
sort(tr5,temprel), sort(tr6,temprel), mode(s,"gehen")]],

[’PROG’(s,e1,l1011),move(s),arg1(s,m), zu_prep(e1,bh),
endsNotBeforeEndOf(tr1,s1pr,s),
startsBeforeStartOf(tr2,s1pr,s),contains(tr3,t2,t1),
contains(tr4,t1,s),precedes(tr5,t1,n),precedes(tr6,t2,n)]),

l11:drs(a,
[[],
[]],
[’BEC’(e1,s1,l1112)]),

l12:drs(a,
[[],
[]],
[’AT’(s1,m,bh)]),

l14:drs(a,
[[tr7],
[sort(tr7,temprel)]],
[contains(tr7,s,c1)]),

l15:drs(a,
[[e,tr8,tr9,tr10],
[sort(e,event), sort(tr8,temprel), sort(tr9,temprel),
sort(tr10,temprel)]],

[’BEC’(e,s1,l1516), prog(e,s),endsWithEndOf(tr8,s1pr,e),
contains(tr9,t1,e), precedes(tr10,e,c1)]),

174 Computing Discourse Relations on a Linguistic Basis

l16:drs(a,
[[],
[]],
[’AT’(s1,m,bh)])

],
[toplabel(l1), bottomlabel(l10), leq(l4,l2), leq(l6,l2),leq(l7,l6),
leq(l10,l4), leq(l2,l012), leq(l10,l6), leq(l9,l89), leq(l11,l1011),
leq(l12,l1112),leq(l16,l1516), less(l012,l1), less(l89,l8),
less(l1011,l10), less(l1112,l11), less(l1516,l15),leq(L,l10)],

[xor([[L=l14],[L=l15]])]
)

).

9.2 The internal representation of UDRSes

IFSes are the input to the DC component which transforms these molecular structures
into atomic pieces of information that are merged with those of the previous discourse
and thus are made available for general procedures of discourse processing. IUDRSes
are therefore distributed data structures implemented as dynamic Prolog predicates.
Ease of access to information determined that the predicate names may not be specific.
Here is how specific types of information are coded:

• Conditions:
cond(DRefId, CondLABEL, LABEL, Predicate, Contexts)
where
arg1 is the referential, or otherwise external, variable of Predicate,
arg2 is the label of the condition (a relict of VIT processing)
arg3 is the group label (the label of the DRS containing the condition)
arg4 is the DRS condition, e.g., move(e, x)
arg5 is the set of contexts set for this condition

• Anchoring of discourse referents:
d in(DRefId, LABEL, Contexts)

• Features:
feat(FARG, FeatureName, FVAL)

• Constraints (label relations):
lr(LABEL, ConstraintName2 , LABEL, Contexts)
toplabel(LABEL)
bottomlabel(LABEL)

9.3 The discourse construction (DC) component

Discourse construction consists of adding IUDRSes as non-defeasible information to
the representation of previous discourse. The global structure of this procedure of
compiling IFSes (implemented by addToDiscourse/2) is as follows:

Kai-Uwe Carstensen 175

addToDiscourse(udrs(DRSes,Constraints,AmbInfo),PresupList):-
compileAmbiguities(AmbInfo,[]-Bind1),
generateGroupLabel(DRSes,Constraints,Bind1-Bind2),
compileConstraints(Constraints,Bind2),
collectPresuppositions(DRSes,Bind2,[]-PresupList),
member(toplabel(L),Constraints),!,
changeConstraints(Constraints,[]-CConstraints),
compileDRSes([[L,lk0,[]]],DRSes-DRSOut,CConstraints,

Bind2-Bindings,[]-ContextsOut)

addToDiscourse takes the UDRS of an IFS as input, produces the IUDRS and returns
the list of collected presuppositions to be justified. During that process binding
information associating constants of IFSes with their corresponding new constants
in IUDRSes is accumulated (by ‘Input-Output‘ arguments). Bindings are lists with
equations ‘IFSconstant= IUDRSconstant‘ as elements.

Ambiguities are compiled as follows: Each ambiguity is given a name A and each
of its disjuncts a name D. Then variable V, A, D and label L are associated by adding
‘V:A:D:L‘ to the bindings. Besides that, value information about V is accumulated
and stored in the bindings as ‘V=[A1:D1:L1, A2:D2:L2, ...]‘ equations.

After compiling the ambiguity information, internal labels for DRSes (“group
labels”) are introduced, both on the basis of the DRSes and Constraints in the IFSes.
Then the constraints are compiled (into lr/4 predicates) and the presuppositions
collected (according to the markers in the DRSes). Finally, the DRSes are compiled
into IUDRS predicates.

Starting with toplabel L as local top and lk0 as global top, compileDRSes/6 acts
recursively traversing the UDRS-graph top down (and sometimes back up again, in
order to collect the superordinate context restrictions). On the basis of the label
relations in CConstraints, it generates daughter structures ‘[Label, MotherLabel,
LocalContexts]‘ which leads to the compilation of single DRSes including the com-
pilation of their universe and conditions:

compileDRS(L:drs(_,U,Conds),Din-Dout,C,InB-OutB,LocalContexts):-
identifyVar(L,DrsID,InB),!,
compileUniverse(U,DrsID,InB-InB1,LocalContexts),
compileConds(Conds,L:DrsID,Din-Dout,C,InB1-OutB,LocalContexts).

compileUniverse([DRs,Features],DrsID,InB-OutB,LocalContexts):-
compileDrefs(DRs,DrsID,InB-Bindings,LocalContexts),
compileFeatures(Features,Bindings-OutB).

In compileDrefs/4, compileFeatures/2 and compileConds/6, the IUDRS predi-
cates d in/3, feat/3 and cond/5 are asserted, respectively, and their Contexts-slots
are filled, accordingly, by their superordinate local contexts collected top down. Only
if DRSOut is the empty list, compilation of the IFSes was successful.

176 Computing Discourse Relations on a Linguistic Basis

10 Discourse processing

10.1 The general picture

The upper implementational structure of discourse processing is as follows:

dp:- % for: discourse processing
retractpreds, % clearing the IUDRS database
iUDRSAlreadyAddedretract, % of previous stories
processDiscourse(1,[],[]).

processDiscourse(N,BindingsIn,ContextsIn):-
node(N,_),!,
processSentence(N,BindingsIn-BindingsOut,ContextsIn-Contexts1),
N1 is N+1,
processDiscourse(N1,BindingsOut,Contexts1).

processDiscourse(_,_,_).

Sentences to be processed are stored as IFSes (note that this would have to be changed
after the TC and DC components were put together). The identifiers of nodes are
integers coding the position of the sentence in discourse. Given that there is a sentence
node available, discourse processing means successive processing of sentences, which
means adding the IUDRS of the nth IFS, resolving the presuppositions and then
applying discourse principles to the underspecified representation of the text so far
(consisting of more than one sentence).

processSentence(N,BindingsIn-BindingsOut,ContextsIn-ContextsOut):-
addIUDRS(N,PresupList),
resolvePresuppositions(PresupList,BindingsIn-B1,

ContextsIn-Contexts1),
(N > 1 -> applicationOfDiscoursePrinciples(B1-BindingsOut,

Contexts1-ContextsOut);
B1 = BindingsOut,Contexts1=ContextsOut).

There are two types of information that are globally carried along with and handed
through from one processing step to the next by corresponding (‘Input-Output‘) lists:
Binding information which on this level of processing means binding of presupposi-
tions/anaphora to one of their antecedents; context information containing the choices
made with respect to ambiguities. This clearly marks the status of binding and con-
text information as defeasible and allows for backtracking. While this would normally
lead to adding the already processed nondefeasible information anew, this is prevented
with addIUDRS/2, which implements a “skipping over”these processing steps.

addIUDRS(N,PresupList):-
iUDRSAlreadyAdded(N,PresupList),!.

addIUDRS(N,PresupList):-
node(N,UDRS),
addToDiscourse(UDRS,PresupList),
asserta(iUDRSAlreadyAdded(N,PresupList)),!.

Kai-Uwe Carstensen 177

10.2 Handling presuppositions

Resolving a presupposition/anaphor is effectively a matter of theorem proving, at least
in its widest sense. It must be shown that a given piece of information can be derived
by some mechanism from another piece of information available (the “discourse rep-
resentation axioms”) given that the relation of accessibility between those pieces is
respected. If this is possible wrt. the given discourse information, the presupposition
can be bound to the antecedent found; if it is not possible, the presupposition has
to be accommodated, that is, added to the discourse information. These cases are
implemented here. We will not deal with the possibility of proving a presupposition
by way of mediating inferences from background knowledge (“bridging”).

Presuppositions are represented in IUDRSes as normal DRSes which are associated
with their triggering sites by the label relation presupOf. The basic mechanism
needed for handling presuppositions is therefore one to prove a DRS. As it is possible
that the antecedent information is distributed over more than one DRS, accessibility
can be required to hold between the presuppositional DRS in situ and the local
maximum of the found antecedent DRSes. In the case of binding, this amounts to
the following main program structure:

bindPresupposition(DrsId,Bin-Bout,ConIn-ConOut):-
inference:bb_put(prooferror,noInfo),
proveDRS(DrsId,1,[]-Antecedents,Bin-Bout,ConIn-Con1),
localMaxOfL(Max,Antecedents,Con1-Con2),
isAccessibleFor(Bout,Max,DrsId,Con2-ConOut).

If we were to prove an arbitrary DRS of a UDRS, we would have to retrieve its polarity
value first. With presuppositional DRSes this is not necessary. The second argument
of proveDRS therefore indicates and sets positive polarity. Before that, information
about a possible prooferror is set to “noinfo”.

The following shows the difference of proving presuppositional and anaphoric
DRSes, namely, the existence and non-existence of conditions to be proved, respec-
tively.

proveDRS(Drs,Pol,AntIn-AntOut,Bin-Bout,ConIn-ConOut):-
conditionsOfDRS(Drs,Conds),!,
drefsOfDRS(Drs,Drefs),
addContextsOfDrefs(Drefs,ConIn-Con1),
proveConds(Conds,Pol,AntIn-AntOut,Bin-Bout,Con1-ConOut).

proveDRS(Drs,_Pol,P-NewP,Bin-Bout,ConIn-ConOut):-
drefsOfDRS(Drs,Drefs),
addContextsOfDrefs(Drefs,ConIn-Con1),
collectFeatures(Drefs,Bin-Bout,Features,FeaturesVar),
callAllBT(FeaturesVar,[],Insts),
\+ Features = Insts,
drefsOfFeatures(Insts,DrefsNew),
addContextsOfDrefs(DrefsNew,Con1-ConOut),
drsesOfDrefs(DrefsNew,Bout,DRSes),
append(DRSes,P,NewP).

178 Computing Discourse Relations on a Linguistic Basis

The main part of the mechanism for the justification of a presupposition obviously is
proving all of its conditions. The general case is shown in the following:

proveConds([C|Conds],Pol,AntIn-AntOut,Bin-Bout,ConIn-ConOut):-
drefsToVariables([C],[]-[P],Bin-B1),
provePredicate(C,P,Pol,AntIn-Ant1,B1-B2,ConIn-Con1),
checkFeatures(C,B2-_,Con1-Con11),
proveConds(Conds,Pol,Ant1-AntOut,B2-Bout,Con11-ConOut).

With this clause, it becomes soon apparent that “proving”means “matching”here
for the most part. A condition C is turned from ground to nonground into P by
systematically replacing discourse referents with variables and storing their relation
in the bindings. After finding a proof/match and before continuing recursively with
proveConds/5, it is checked whether the features of the involved discourse referents
of C are compatible with P, given the new Bindings and Contexts.

provePredicate/6 implements the core of this mechanism. In the standard case,
callPred/4 finds an instantiation of P (CONDOUT) different from C, checks the con-
texts and retrieves the group label GL. Then the polarity of the antecedent DRS is
computed (Pol1) and checked for consistence. In case of failure checkConsistence
sets prooferror to “inconsistence(C)”.

provePredicate(OLD,CONDIN,Pol,AntIn-[GL|AntIn],B-B,ConIn-ConOut):-
callPred(CONDIN,CONDOUT,GL,ConIn-Con1),
\+ CONDOUT=OLD,
polarityOfLabel(GL,Pol1,Con1-ConOut),
checkConsistence(Old,Pol,Pol1),
bb_put(bindings,B).

That proving a predicate with this mechanism may also involve inferences is realized
by the next two clauses of provePredicate/6. Sentences like If a man has a daugh-
ter then he loves his child require the presupposition triggered by “the child”to be
justified by a daughter, which goes beyond simple matching. To handle cases like
this, the predicate of the IUDRS condition (KprimePred) must be literally exchanged
by another one (KPred) given that there is an implicative relation between them in
the right direction (cf. [2] for the definition of the ‘>>‘ relations) relative to the input
polarity.

provePredicate(Old,cond(EV,L,GL1,KprimePred,V),1,AntIn-[GL|AntIn],
B-B,ConIn-ConOut):-

’>>’(KPred,KprimePred),
callPred(cond(EV,L,GL1,KPred,V),_CONDOUT,GL,ConIn-Con1),
polarityOfLabel(GL,Pol1,Con1-ConOut),
checkConsistence(Old,1,Pol1).

Given negative polarity (that is, for sentences like If a girl doesn’t like fish, then she
doesn’t like sushi), the direction of implication is reversed:

Kai-Uwe Carstensen 179

provePredicate(Old,cond(EV,L,GL1,KprimePred,V),0,AntIn-[GL|AntIn],
B-B,ConIn-ConOut):-

’>>’(KprimePred,KPred),
callPred(cond(EV,L,GL1,KPred,V),_CONDOUT,GL,ConIn-Con1),
polarityOfLabel(GL,Pol1,Con1-ConOut),
checkConsistence(Old,0,Pol1).

provePredicate(_,_,_,_,_,_):-
bb_get(prooferror,N),N=noInfo,bb_put(prooferror,noMatch),
!,fail.

With regard to accommodating presuppositions, we have not come to a final conclu-
sion how to represent it in the IUDRS. What is clear, however, is that one needs to
show that the presupposition cannot be refuted, which is the prerequisite for adding
the presuppositional material to the discourse representation.

accommodatePresupposition(X,B-B,C-C):-
\+ presuppositionIsRefuted(X,C-_),
...

10.3 Proving temporal theorems with a temporal constraint
solver

During the application of the interpretation principles it is sometimes necessary to
check whether a certain temporal relation between two eventualities holds or not. We
decided to use a temporal constraint solver for the computation of the consistency of
a set of temporal relations and to model logical queries on top of this solver.

Let TR be a set of temporal relations, and let temprel(tr1,ev1,ev2) be a specific
temporal relation. Let tcs(TR)=1 signify success of applying the temporal constraint
solver on TR representing consistence, and let tcs(TR)=0 signify the corresponding
failure representing inconsistence.

temprel(tr1,ev1,ev2) will be called compatible with TR iff tcs(TR ∪ {temprel(tr1,
ev1,ev2)})=1. Then temprel(tr1,ev1,ev2) can be called derivable from TR iff tem-
prel(tr1,ev1,ev2) is compatible with TR and its converse is not compatible with TR.
Thus, temprel(tr1,ev1,ev2) can be called not derivable from TR if either it is not
compatible with TR, or both temprel(tr1,ev1,ev2) and its converse are compatible
with TR. By explicitly specifying the relevant conditions, this can be implemented as
follows (Cond is the condition to be derived):

isNotDerivable(Cond,ConverseCond,SecTempConds,UnsecTempConds,
ConIn-ConOut):-

isTemporallyCompatibleWith(Cond,SecTempConds,
UnsecTempConds,ConIn-Con1),

!,
isTemporallyCompatibleWith(ConverseCond,SecTempConds,

UnsecTempConds,Con1-ConOut).
isNotDerivable(_,_,_,_,Con-Con).

Our temporal constraint solver uses Allen-like temporal interval relations defined by
relations between the interval endpoints. Using endpoint relations makes it easy to

180 Computing Discourse Relations on a Linguistic Basis

define temporal relations that would present representational difficulties on the logical
level. For example, the relation precedes(tr1,end(ev1), end(ev2)) can be defined as
endsBeforeEndOf(tr1,ev1,ev2) and neg(precedes(tr1,ev1,ev2)) can be defined as
doesnotprecede(tr1,ev1,ev2).

We use the constraint logic programming over finite domains (clpfd) library of Sic-
stus Prolog to define such temporal relations. Here are some definitions of endpoint-
based temporal relations:

doesnotprecede(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #>= YS.

endsNotBeforeEndOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #>= YE.

startsBeforeStartOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XS #< YS.

startsBeforeEndOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XS #< YE.

endsBeforeStartOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #< YS.

endsBeforeEndOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #< YE.

endsWithStartOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #= YS.

endsWithEndOf(XS,XE,YS,YE):-
XS #< XE,
YS #< YE,
XE #= YE.

precedes(XS,XE,YS,YE):-
XS #< XE,
XE #< YS,
YS #< YE.

meets(XS,XE,YS,YE):-
XS #< XE,
XE #= YS,
YS #< YE.

abuts(XS,XE,YS,YE):-meets(XS,XE,YS,YE).

Kai-Uwe Carstensen 181

contains(XS,XE,YS,YE):- %contains improper
XS #< XE,
YS #< YE,
XS #=< YS,
XE #>= YE.

overlaps_(XS,XE,YS,YE):-
XS #< YS,
YS #< XE,
XE #< YE.

There temporal conditions on the level of IUDRSes and the temporal relations used
by the constraint solver are quite different, however. While the former take discourse
referents as arguments, the arguments of the latter are integers of a finite domain.
In order to use the solver, the gap between different data structures must be bridged
first. Most importantly, it has to be secured that the context mechanism goes well
together with the constraint solver. On the one hand, only those temporal conditions
licensed by the current contexts are allowed as input to the solver. On the other
hand, the solver itself must be allowed to select between ambiguity options. Using
the solver therefore requires the following steps:

Collection of relevant temporal conditions. This is done by finding all IUDRS condi-
tions whose referential variable (remember, the first argument of cond/5) is of sort
temprel, and then, by filtering those conditions into secure temporal conditions (those
who necessarily conform to the current contexts) and insecure temporal conditions
(those who conform but introduce new contexts), and removing those who do not
conform to the current contexts.

collectRelevantTempConds(SecTempConds,UnsecTempConds,Contexts):-
findall(cond(A,B,C,TR,Con),(feat(A,sort,temprel),

cond(A,B,C,TR,Con)),AllTempConds),
filterConditions(AllTempConds,Contexts,[]-SecTempConds,

[]-UnsecTempConds).

Checking for compatibility of a temporal condition. The basis for logical proofs is
testing for compatibility of a certain IUDRS temporal condition. Thus the solver has
to be called with this condition to be checked, the secure and insecure relations, and
the information about the current contexts. Checking for compatibility then means
finding a consistent solution at least with respect to the secure conditions (actually, the
current implementation tries to find maximal consistent sets of conditions including
insecure ones). This, in turn, means first checking whether the contexts of each
insecure condition are compatible. If so, the temporal constraint solver is called with
callTCS/1.

isTemporallyCompatibleWith(TCToBeChecked,SecTempConds,UnsecTempConds,
ConIn-ConOut):-

consistentSolution(UnsecTempConds,[]-UnusedUnsec,
[TCToBeChecked|SecTempConds],Solution,
ConIn-ConOut),

182 Computing Discourse Relations on a Linguistic Basis

(Solution = [] ->
format(’~n~nNo (further) solution found!’,[]),!,fail
;
true).

consistentSolution([],U-U,L,L,C-C).
consistentSolution([X|R],U1-U2,L,NL,ConIn-ConOut):-

X=cond(_,_,_,_,Con),
checkContexts00(Con,ConIn-Con1),
consistentSolution([X|L]),
consistentSolution(R,U1-U2,[X|L],NL,Con1-ConOut).

consistentSolution([X|R],U1-U2,L,NL,ConIn-ConOut):-
consistentSolution(R,[X|U1]-U2,L,NL,ConIn-ConOut).

Calling the temporal constraint solver (TCS). The first task of finding a consistent
solution for a set of conditions (consistentSolution/1) is to associate and replace
each eventuality constant with two variables. After that, the set of variables is col-
lected from the bindings. With the list of these variables and the list of conditions as
constraints, the TCS is called.

consistentSolution(ConstraintList):-
buildVarConstraints(ConstraintList,[],[],

VarConstraintList,VarBindings),
collectVariablesfromVarList(VarBindings,Vars),
callTCS(Vars,VarConstraintList),!.

Calling the TCS involves first setting the domain for the list of variables, which is a
simple function of the length of the list. After that, the constraints are applied, which
means calling Prolog with the temporal relation deprived of its referential variable
(here we have the four arguments of the temporal relations defined above!).

callTCS(VarList,VarConstraintList):-
length(VarList,VL),
N is (VL * 2),
domain(VarList,0,N),
applyConstraints(VarConstraintList),!.

applyConstraints([],_).
applyConstraints([cond(_,_,_,TemporalRelation,_)|ConstraintList]):-

TemporalRelation=..[R,_|Args],
Pred=..[R|Args],!,
Pred,
applyConstraints(ConstraintList).

Kai-Uwe Carstensen 183

10.4 Application of the interpretation principles

With the mechanisms for handling ambiguities, presupposition justification and the
resolution of temporal relationships, the foundation is prepared for the application
of interpretation principles for the implicit computation of discourse relations as de-
scribed in ([3]). Although we will refrain from reporting all the loose ends that re-
mained due to the shortness of development time, we will at least sketch the realization
of JoINC (Justification of K-Incompatibility) using the example (the “Busbeispiel”)
of the case study: “Maria ging zur Bushaltestelle. Der Bus kam. Sie rannte (zur
Bushaltestelle).”

What we want to show is how the INTERFERED/INTERFERENCE relation
between the progressive state of going to the bus stop (S1) and the progressive state
of running (to the bus stop) (S2) is excluded and, instead, a SEQUENCE relation
between S1 and S2 is implicitly assumed by justifying their incompatibility with an
intervening CAUSAL eventuality EV (which implies a CAUSE/RESPONSE between
EV and S2 as well as an INTERFERED/INTERFERENCE relation between S1 and
EV). The general implementational structure (note the different arities of ’JoINC’)
is therefore

applicationOfDiscoursePrinciples(Bin-Bout,ConIn-ConOut):-
’JoINC’(Bin-Bout,ConIn-ConOut).

’JoINC’(Bin-Bout,ConIn-ConOut):-
getBottomlabel(BL),
format(’~n~nChecking compatibility of ~w...’,[BL]),
’JoINC’(BL,Bin-Bout,ConIn-ConOut),!.

’JoINC’(BL,Bin-Bout,ConIn-ConOut):-
findMatchingState(BL,Bin-Bout,ConIn-ConOut),
format(’~nOk, no inconsistency for ~w found

by direct matching’,[BL]),!.

First, the bottom label with the main eventuality of the corresponding sentence is
retrieved and with it, ’JoINC’/3 is performed. It tries to find a matching state for
S1 by:

• collecting the relevant discourse referents, i.e., the arguments of the predicates,
of S1 (that’s where the referential argument of the IUDRS conditions comes in
handy),

• collecting their DRSes and proving/matching them with the previous discourse
information

• collecting and proving the arguments’ features and, finally,

• proving S1’s DRS with the actual bindings:

findMatchingState(Drs,ConIn-ConOut,Bin-Bout):-
bb_put(prooferror,noInfo),

184 Computing Discourse Relations on a Linguistic Basis

d_in(S,Drs),
feat(S,sort,state),
bb_put(matchstate,S),
getArgsOfState(S,Args),
getDRSesOfDRs(Args,DRSes),
!,
proveDRSes(DRSes,[]-_P1,Bin-B1,ConIn-Con1),
collectFeatures(Args,B1-B2,Features,FeaturesVar),
callAllBT(FeaturesVar,[],Insts),
\+ Features = Insts,
!,
bb_put(bindings,[]),
proveDRSes([Drs],[]-_P2,B2-Bout,Con1-ConOut),!.

findMatchingState(_Drs,C-C,B-B).

This should guarantee that it is exactly the match for Maria’s special movement that
either succeeds or fails. For the case of failure, the relevant information is stored with
blackboard primitives. This is relevant for the second clause of ’JoINC’/3 , which
imlements the main part of that principle:

’JoINC’(BL,Bin-Bout,Contexts-ConOut):-
inference:bb_get(prooferror,PE),
(PE=inconsistence(Cond) ->
(getIncompatibleStates(S1,S2),
d_in(S2,_,Con),
checkContexts00(Con,Contexts-Con0),
collectRelevantTempConds(SecTempConds,UnsecTempConds,Con0), !,
(isNotDerivable(cond(1,2,3,precedes(1,S1,S2),[]),

cond(5,6,7,precedes(5,S2,S1),[]),
SecTempConds,UnsecTempConds,Con0-Con1),

isNotDerivable(cond(1,2,3,precedes(1,S2,S1),[]),
cond(5,6,7,precedes(5,S1,S2),[]),
SecTempConds,UnsecTempConds,Con0-Con1),

format(’~n~n~w led to inconsistence of states ~w and ~w !’,
[Cond,S1,S2]),!,

findInterveningEventuality(S2,S1,EV,SecTempConds,
UnsecTempConds, Con1-ConOut),

iFSCompilation:myGensym(dref,DRefID),
iFSCompilation:drsassert(Bin,ConOut,d_in(DRefID,BL)),
iFSCompilation:myGensym(ml,CondID),
iFSCompilation:drsassert(Bin,ConOut,cond(DRefID,CondID,BL,

precedes(DRefID,S2,S1),ConOut)),
format(’~nAdded temporal precedence of ~w and ~w to

discourse’,[S2,S1])
;
format(’~n~n~w led to incompatibility of states ~w and ~w,

but there is no inconsistency’,[Cond,S1,S2])
)
)

Kai-Uwe Carstensen 185

;
format(’~nOk, no inconsistency for ~w found

by direct matching’,[BL]),Contexts=ConOut
),
Bin=Bout.

In case of an inconsistency found (in this case, because of the mismatch of Maria’s
running and walking), the states S1 and S2 are retrieved, S2’s contexts are checked,
and the relevant temporal conditions are collected (see above). Only if neither
precedes(S1,S2) nor precedes(S2,S1) are derivable we have shown INC (K-Incom-
patibility). We then have to find an intervening eventuality. If this succeeds, temporal
precedence of S2 and S1 (corresponding to a SEQUENCE discourse relation) can be
asserted, as well as the relation of non-accidental dependency (which is not done here).

11 Final remarks

We have tried to give an idea of how some of the theoretical considerations concerning
presuppositions and underspecification in the computation of temporal and other
relations in discourse can be implemented.

In the following appendix I, the reader will find the IFSes input to the DC com-
ponent (and to subsequent discourse processing). Note that the IFSes were not con-
structed automatically and may therefore contain both theoretical insufficiencies as
well as simple errors. See [7] for a graphical presentation of the Busbeispiel’s UDRS
representation. Appendix II shows some inline outputs of the program in order to
show its processing the Busbeispiel. Unfortunately, we were faced with major funda-
mental problems of UDRS presentation when trying to adapt an existing visualization
tool to the IUDRSes as developed here. Appendix III shows the internal representa-
tion of the UDRSes (IUDRSes) of the Busbeispiel in the current state of the program.

References

[1] Michael Dorna. The adt package for the verbmobil interface term. Technical
report, Verbmobil Report 104, Institut für maschinelle Sprachverarbeitung, Uni-
versität Stuttgart, 1996.

[2] Uwe Reyle. Co-indexing labelled drss to represent and reason with ambiguities.
In Kees van Deemter Stanley Peters, editor, Semantic Ambiguity and Underspec-
ification. CSLI Publications, Stanford, 1996.

[3] Uwe Reyle and Antje Rossdeutscher. Constraint based, bottom up discourse in-
terpretation. In Uwe Reyle, editor, Presuppositions and Underspecification in the
Computation of Temporal and other Relations in Discourse. Arbeitsberichte des
Sonderforschungsbereichs 340, Stuttgart/Tübingen, Nr.164, 2000.

186 Computing Discourse Relations on a Linguistic Basis

[4] Uwe Reyle and Antje Rossdeutscher. Justifying presuppositions to resolve tempo-
ral underspecification. In Uwe Reyle, editor, Presuppositions and Underspecifica-
tion in the Computation of Temporal and other Relations in Discourse. Arbeits-
berichte des Sonderforschungsbereichs 340, Stuttgart/Tübingen, Nr.164, 2000.

[5] Antje Rossdeutscher. Discourse relations. In Uwe Reyle, editor, Pre-
suppositions and Underspecification in the Computation of Temporal and
other Relations in Discourse. Arbeitsberichte des Sonderforschungsbereichs 340,
Stuttgart/Tübingen, Nr.164, 2000.

[6] Antje Rossdeutscher and Uwe Reyle. Very short stories. In Uwe Reyle, edi-
tor, Presuppositions and Underspecification in the Computation of Temporal and
other Relations in Discourse. Arbeitsberichte des Sonderforschungsbereichs 340,
Stuttgart/Tübingen, Nr.164, 2000.

[7] Jasmin Saric. Kompositionalität regelbasiert. die implementierung des lexikons
und der tempuskonstruktion. In Uwe Reyle, editor, Presuppositions and Under-
specification in the Computation of Temporal and other Relations in Discourse.
Arbeitsberichte des Sonderforschungsbereichs 340, Stuttgart/Tübingen, Nr.164,
2000.

[8] Michael Schiehlen. Semantic construction from parse forests. In Proceedings
of 16th International Conference on Computational Linguistics (COLING 96),
Copenhagen, Denmark, 1996.

[9] Rob van der Sandt. Presupposition projection as anaphora resolution. Journal of
Semantics, 9(4):333–378, 1992.

Kai-Uwe Carstensen 187

Appendix I: The IFSes for the Busbeispiel (constructed non-
automatically)

node(1,
udrs([l1:drs(a,

[[],
[]],
[decl(l012)]),

l2:drs(a,
[[],
[]],
[]),

l3:drs(p(l4),
[[bh],
[sort(bh,location),gend(bh,fem),num(bh,sg)]],
[bushaltestelle(bh)]),

l4:drs(a,
[[],
[]],

[]),
l5:drs(p(l6),

[[m],
[sort(m,person),gend(m,fem)]],
[]),

l6:drs(a,
[[],
[]],
[]),

l7:drs(a,
[[],
[named(m,"maria")]],
[]),

l8:drs(p(l10),
[[s1pr],
[sort(s1pr,state)]],
[’NEG’(l89)]),

l9:drs(a,
[[],
[]],
[’AT’(s1pr,m,bh)]),

l10:drs(a,
[[s,e1,t1,t2,c1,n,tr1,tr2,tr3,tr4,tr5,tr6],
[sort(s,state),sort(e1,event),
sort(t1,tt),sort(t2,tf), sort(c1,cut),
sort(n,now), sort(tr1,temprel),
sort(tr2,temprel), sort(tr3,temprel),
sort(tr4,temprel), sort(tr5,temprel),
sort(tr6,temprel), mode(s,"gehen")]],

[’PROG’(s,e1,l1011),move(s),arg1(s,m),zu_prep(e1,bh),

188 Computing Discourse Relations on a Linguistic Basis

endsNotBeforeEndOf(tr1,s1pr,s),
startsBeforeStartOf(tr2,s1pr,s),
contains(tr3,t2,t1),contains(tr4,t1,s),
precedes(tr5,t1,n),precedes(tr6,t2,n)]),

l11:drs(a,
[[],
[]],
[’BEC’(e1,s1,l1112)]),

l12:drs(a,
[[],
[]],
[’AT’(s1,m,bh)]),

l14:drs(a,
[[tr7],
[sort(tr7,temprel)]],
[contains(tr7,s,c1)]),

l15:drs(a,
[[e,tr8,tr9,tr10],
[sort(e,event),sort(tr8,temprel),sort(tr9,temprel),

sort(tr10,temprel)]],
[’BEC’(e,s1,l1516),prog(e,s),endsWithEndOf(tr8,s1pr,e),
contains(tr9,t1,e),precedes(tr10,e,c1)]),

l16:drs(a,
[[],
[]],
[’AT’(s1,m,bh)])

],
[toplabel(l1),bottomlabel(l10),leq(l4,l2),leq(l6,l2),leq(l7,l6),
leq(l10,l4),leq(l2,l012),leq(l10,l6),leq(l9,l89),leq(l11,l1011),
leq(l12,l1112),leq(l16,l1516),less(l012,l1),less(l89,l8),
less(l1011,l10),less(l1112,l11),less(l1516,l15),leq(L,l10)],
[xor([[L=l14],[L=l15]])]

)).

node(2,
udrs([l1:drs(a,

[[],
[]],
[decl(l012)]),

l2:drs(a,
[[],
[]],
[]),

l5:drs(p(l6),
[[b],
[sort(b,vehicle),gend(b,masc)]],
[]),

l6:drs(a,

Kai-Uwe Carstensen 189

[[],
[]],
[]),

l8:drs(p(l10),
[[s2pr1,s2pr2,y,l,tr1],
[sort(s2pr1,state),sort(s2pr2,state),
sort(y,person), sort(l,location),
sort(tr1,temprel)]],

[’NEG’(l89),kommenATT(s2pr2,y,l),contains(tr1,s2pr2,t1)]),
l9:drs(a,

[[],
[]],
[’AT’(s2pr1,b,l)]),

l10:drs(a,
[[s,e1,t1,t2,c1,n,tr2,tr3,tr4,tr5,tr6,tr7],
[sort(s,state),sort(e1,event),
sort(t1,tt),sort(t2,tf), sort(c1,cut),
sort(n,now), sort(tr2,temprel),
sort(tr3,temprel), sort(tr4,temprel),
sort(tr5,temprel), sort(tr6,temprel),
sort(tr7,temprel)]],

[’PROG’(s,e1,l1011), move(s),arg1(s,m),
zu_prep(e1,bh),
endsNotBeforeEndOf(tr2,s2pr1,s),
startsBeforeStartOf(tr3,s2pr1,s),
contains(tr4t2,t1), contains(tr5,t1,s),
precedes(tr6,t1,n), precedes(tr7,t2,n)]),

l11:drs(a,
[[],
[]],
[’BEC’(e1,s1,l1112)]),

l12:drs(a,
[[],
[]],
[’AT’(s1,b,l)]),

l14:drs(a,
[[tr8],
[sort(tr8,temprel)]],
[contains(tr8s,c1)]),

l15:drs(a,
[[e,tr9,tr10,tr11],
[sort(e,event), sort(tr9,temprel),
sort(tr10,temprel), sort(tr11,temprel)]],

[’BEC’(e,s1,l1516),prog(e,s),
endsWithEndOf(tr9,s2pr1,e),
contains(tr10,t1,e), precedes(tr11,e,c1)]),

l16:drs(a,
[[],

190 Computing Discourse Relations on a Linguistic Basis

[]],
[’AT’(s1,b,l)])

],
[toplabel(l1),bottomlabel(l10),leq(l6,l2),leq(l2,l012),
leq(l10,l6),leq(l9,l89),leq(l11,l1011),leq(l12,l1112),
leq(l16,l1516),less(l012,l1),less(l89,l8),less(l1011,l10),
less(l1112,l11),less(l1516,l15),leq(L,l10)],
[xor([[L=l14],[L=l15]])]

)).

node(3,
udrs([l1:drs(a,

[[],
[]],
[decl(l012)]),

l2:drs(a,
[[],
[]],
[]),

l3:drs(p(l4),
[[bh],
[sort(bh,location),gend(bh,fem),num(bh,sg)]],
[bushaltestelle(bh)]),

l4:drs(a,
[[],
[]],
[]),

l5:drs(p(l6),
[[m],
[sort(m,person),gend(m,fem)]],
[]),

l6:drs(a,
[[],
[]],
[]),

l7:drs(a,
[[],
[]],
[]),

l8:drs(p(l10),
[[s3pr],
[sort(s3pr,state)]],
[’NEG’(l89)]),

l9:drs(a,
[[],
[]],
[’AT’(s3pr,m,bh)]),

l10:drs(a,
[[s,e1,t1,t2,c1,n,tr1,tr2,tr3,tr4,tr5,tr6],

Kai-Uwe Carstensen 191

[sort(s,state),sort(e1,event),
sort(t1,tt),sort(t2,tf), sort(c1,cut),
sort(n,now), sort(tr1,temprel),
sort(tr2,temprel), sort(tr3,temprel),
sort(tr4,temprel), sort(tr5,temprel),
sort(tr6,temprel), mode(s,"rennen")]],

[’PROG’(s,e1,l1011),
move(s),arg1(s,m), zu_prep(e1,bh),
endsNotBeforeEndOf(tr1,s1pr,s),
startsBeforeStartOf(tr2,s1pr,s),
contains(tr3,t2,t1), contains(tr4,t1,s),
precedes(tr5,t1,n), precedes(tr6,t2,n)]),

l11:drs(a,
[[],
[]],
[’BEC’(e1,s1,l1112)]),

l12:drs(a,
[[],
[]],
[’AT’(s1,m,bh)]),

l14:drs(a,
[[tr7],
[sort(tr7,temprel)]],
[contains(tr7,s,c1)]),

l15:drs(a,
[[e,tr8,tr9,tr10,tr11],
[sort(e,event), sort(tr8,temprel),
sort(tr9,temprel), sort(tr10,temprel),
sort(tr11,temprel)]],

[’BEC’(e,s1,l1516), prog(e,s),
endsWithEndOf(tr8,s1pr,e),
contains(tr9,t1,e), precedes(tr10,e,c1),
endsWithEndOf(tr11,s,e)]),

l16:drs(a,
[[],
[]],
[’AT’(s1,m,bh)])

],
[toplabel(l1),bottomlabel(l10),leq(l4,l2),leq(l6,l2),leq(l7,l6),
leq(l10,l4),leq(l2,l012),leq(l10,l6),leq(l9,l89),leq(l11,l1011),
leq(l12,l1112),leq(l16,l1516),less(l012,l1),less(l89,l8),
less(l1011,l10),less(l1112,l11),less(l1516,l15),leq(L,l10)],
[xor([[L=l14],[L=l15]])]

)).

192 Computing Discourse Relations on a Linguistic Basis

Appendix II: Program Output

| ?- dp.

Bindings: [l20=l42,tr10=i21,tr9=i20,tr8=i19,e=i18,tr7=i17,l17=l29,
s1pr=i16,bh=i15,m=i14,l19=l25,s1=i13,l18=l23,tr6=i12,
tr5=i11,tr4=i10,tr3=i9,tr2=i8,tr1=i7,n=i6,c1=i5,t2=i4,
t1=i3,e1=i2,s=i1,l1516=l20,l1112=l19,l1011=l18,l89=l17,
l012=l16,l16=l15,l12=l14,l11=l13,l10=l12,l9=l11,l8=l10,
l7=l9,l6=l8,l5=l7,l4=l6,l3=l5,l2=l4,l1=l3,_102:a1:d2:l2,
l15=l2,_102:a1:d1:l1,l14=l1]

...trying to resolve l10 ([NEG(l29)])...

Current contexts (bindPresup): []

l10 gets accommodated to l12

...trying to resolve the anaphor in l7...

Current contexts (bindPresup): []

l7 gets accommodated to l8

...trying to resolve l5 ([bushaltestelle(i15)])...

Current contexts (bindPresup): []

l5 gets accommodated to l6

Current contexts: []

Bindings: [l64=l88,tr11=i49,tr10=i48,tr9=i47,e=i46,tr8s=i45,tr8=i44,tr4t2=i43,
bh=i42,m=i41,l61=l73,tr1=i40,y=i39,s2pr2=i38,s2pr1=i37,l=i36,b=i35,
l63=l70,s1=i34,l62=l68,tr7=i33,tr6=i32,tr5=i31,tr4=i30,tr3=i29,
tr2=i28,n=i27,c1=i26,t2=i25,t1=i24,e1=i23,s=i22,l60=l66,l1516=l64,
l1112=l63,l1011=l62,l89=l61,l012=l60,l16=l59,l12=l58,l11=l57,
l10=l56,l9=l55,l8=l54,l6=l53,l5=l52,l2=l51,l1=l50,_164:a2:d4:l49,
l15=l49,_164:a2:d3:l48,l14=l48]

...trying to resolve l54
([NEG(l73),contains(i40,i38,i24),kommenATT(i38,i39,i36)])...

Current contexts (bindPresup): []

l54 gets accommodated to l56

...trying to resolve the anaphor in l52...

Current contexts (bindPresup): []

Kai-Uwe Carstensen 193

l52 gets accommodated to l53

Checking compatibility of l56...
Args of situation i22:[i41]
Ok, no inconsistency for l56 found by direct matching

Current contexts: []

Bindings: [l113=l136,tr11=i72,tr10=i71,tr9=i70,tr8=i69,e=i68,tr7=i67,s1pr=i66,
l110=l123,s3pr=i65,bh=i64,m=i63,l112=l119,s1=i62,l111=l117,tr6=i61,
tr5=i60,tr4=i59,tr3=i58,tr2=i57,tr1=i56,n=i55,c1=i54,t2=i53,t1=i52,
e1=i51,s=i50,l109=l115,l1516=l113,l1112=l112,l1011=l111,l89=l110,
l012=l109,l16=l108,l12=l107,l11=l106,l10=l105,l9=l104,l8=l103,l7=l102,
l6=l101,l5=l100,l4=l99,l3=l98,l2=l97,l1=l96,_226:a3:d6:l95,l15=l95,
_226:a3:d5:l94,l14=l94]

...trying to resolve l103 ([NEG(l123)])...

Current contexts (bindPresup): []

l103 gets accommodated to l105

...trying to resolve the anaphor in l100...

Current contexts (bindPresup): []

Current contexts(after bind): []

l100 gets bound to l7
Equations: [i63=i14]

...trying to resolve l98 ([bushaltestelle(i64)])...

Current contexts (bindPresup): []

Current contexts(after bind): []

l98 gets bound to l5
Equations: [l98=l5,l121=l27,i64=i15,i63=i14]

Checking compatibility of l105...
Args of situation i50:[i63]

feat(i1,mode,[114,101,110,110,101,110])
led to inconsistence of states i50 and i1 !

***intervening eventuality: i51

194 Computing Discourse Relations on a Linguistic Basis

Added temporal precedence of i1 and i50 to discourse

Current contexts: [a3:d5,a2:d4,a1:d1]

Kai-Uwe Carstensen 195

Appendix III: IUDRSes of the Busbeispiel

cond(i73, l143, l105, precedes(i73,i1,i50), [a3:d5,a2:d4,a1:d1]).
cond(i72, l142, l105, endsWithEndOf(i72,i50,i68), [a3:d6]).
cond(i71, l141, l105, precedes(i71,i68,i54), [a3:d6]).
cond(i70, l140, l105, contains(i70,i52,i68), [a3:d6]).
cond(i69, l139, l105, endsWithEndOf(i69,i66,i68), [a3:d6]).
cond(i68, l138, l105, prog(i68,i50), [a3:d6]).
cond(i62, l137, l108, ’AT’(i62,i63,i64), [a3:d6]).
cond(i68, l135, l105, ’BEC’(i68,i62,l136), [a3:d6]).
cond(i67, l134, l105, contains(i67,i50,i54), [a3:d5]).
cond(i61, l133, l105, precedes(i61,i53,i55), []).
cond(i60, l132, l105, precedes(i60,i52,i55), []).
cond(i59, l131, l105, contains(i59,i52,i50), []).
cond(i58, l130, l105, contains(i58,i53,i52), []).
cond(i57, l129, l105, startsBeforeStartOf(i57,i66,i50), []).
cond(i56, l128, l105, endsNotBeforeEndOf(i56,i66,i50), []).
cond(i51, l127, l105, zu_prep(i51,i64), []).
cond(i50, l126, l105, arg1(i50,i63), []).
cond(i50, l125, l105, move(i50), []).
cond(i65, l124, l104, ’AT’(i65,i63,i64), []).
cond(l123, l122, l103, ’NEG’(l123), []).
cond(i64, l121, l98, bushaltestelle(i64), []).
cond(i62, l120, l107, ’AT’(i62,i63,i64), []).
cond(i51, l118, l106, ’BEC’(i51,i62,l119), []).
cond(i50, l116, l105, ’PROG’(i50,i51,l117), []).
cond(l115, l114, l96, decl(l115), []).
cond(i49, l93, l56, precedes(i49,i46,i26), [a2:d4]).
cond(i48, l92, l56, contains(i48,i24,i46), [a2:d4]).
cond(i47, l91, l56, endsWithEndOf(i47,i37,i46), [a2:d4]).
cond(i46, l90, l56, prog(i46,i22), [a2:d4]).
cond(i34, l89, l59, ’AT’(i34,i35,i36), [a2:d4]).
cond(i46, l87, l56, ’BEC’(i46,i34,l88), [a2:d4]).
cond(i45, l86, l56, contains(i45,i26), [a2:d3]).
cond(i33, l85, l56, precedes(i33,i25,i27), []).
cond(i32, l84, l56, precedes(i32,i24,i27), []).
cond(i31, l83, l56, contains(i31,i24,i22), []).
cond(i43, l82, l56, contains(i43,i24), []).
cond(i29, l81, l56, startsBeforeStartOf(i29,i37,i22), []).
cond(i28, l80, l56, endsNotBeforeEndOf(i28,i37,i22), []).
cond(i23, l79, l56, zu_prep(i23,i42), []).
cond(i22, l78, l56, arg1(i22,i41), []).
cond(i22, l77, l56, move(i22), []).
cond(i40, l76, l54, contains(i40,i38,i24), []).
cond(i38, l75, l54, kommenATT(i38,i39,i36), []).
cond(i37, l74, l55, ’AT’(i37,i35,i36), []).
cond(l73, l72, l54, ’NEG’(l73), []).
cond(i34, l71, l58, ’AT’(i34,i35,i36), []).
cond(i23, l69, l57, ’BEC’(i23,i34,l70), []).
cond(i22, l67, l56, ’PROG’(i22,i23,l68), []).

196 Computing Discourse Relations on a Linguistic Basis

cond(l66, l65, l50, decl(l66), []).
cond(i21, l47, l12, precedes(i21,i18,i5), [a1:d2]).
cond(i20, l46, l12, contains(i20,i3,i18), [a1:d2]).
cond(i19, l45, l12, endsWithEndOf(i19,i16,i18), [a1:d2]).
cond(i18, l44, l12, prog(i18,i1), [a1:d2]).
cond(i13, l43, l15, ’AT’(i13,i14,i15), [a1:d2]).
cond(i18, l41, l12, ’BEC’(i18,i13,l42), [a1:d2]).
cond(i17, l40, l12, contains(i17,i1,i5), [a1:d1]).
cond(i12, l39, l12, precedes(i12,i4,i6), []).
cond(i11, l38, l12, precedes(i11,i3,i6), []).
cond(i10, l37, l12, contains(i10,i3,i1), []).
cond(i9, l36, l12, contains(i9,i4,i3), []).
cond(i8, l35, l12, startsBeforeStartOf(i8,i16,i1), []).
cond(i7, l34, l12, endsNotBeforeEndOf(i7,i16,i1), []).
cond(i2, l33, l12, zu_prep(i2,i15), []).
cond(i1, l32, l12, arg1(i1,i14), []).
cond(i1, l31, l12, move(i1), []).
cond(i16, l30, l11, ’AT’(i16,i14,i15), []).
cond(l29, l28, l10, ’NEG’(l29), []).
cond(i15, l27, l5, bushaltestelle(i15), []).
cond(i13, l26, l14, ’AT’(i13,i14,i15), []).
cond(i2, l24, l13, ’BEC’(i2,i13,l25), []).
cond(i1, l22, l12, ’PROG’(i1,i2,l23), []).
cond(l15, l21, l3, decl(l15), []).

lr(l103, leq, l96, []).
lr(l100, presupOf, l101, []).
lr(l98, presupOf, l99, []).
lr(l94, leq, l105, [a3:d5]).
lr(l95, leq, l105, [a3:d6]).
lr(l113, less, l95, []).
lr(l112, less, l106, []).
lr(l111, less, l105, []).
lr(l110, less, l103, []).
lr(l109, less, l96, []).
lr(l108, leq, l113, []).
lr(l107, leq, l112, []).
lr(l106, leq, l111, []).
lr(l104, leq, l110, []).
lr(l105, leq, l101, []).
lr(l97, leq, l109, []).
lr(l105, leq, l99, []).
lr(l102, leq, l101, []).
lr(l101, leq, l97, []).
lr(l99, leq, l97, []).
lr(l96, leq, lk0, []).
lr(l96, follows, l50, []).
lr(l52, leq, l50, []).
lr(l54, leq, l50, []).

Kai-Uwe Carstensen 197

lr(l48, leq, l56, [a2:d3]).
lr(l49, leq, l56, [a2:d4]).
lr(l64, less, l49, []).
lr(l63, less, l57, []).
lr(l62, less, l56, []).
lr(l61, less, l54, []).
lr(l60, less, l50, []).
lr(l59, leq, l64, []).
lr(l58, leq, l63, []).
lr(l57, leq, l62, []).
lr(l55, leq, l61, []).
lr(l56, leq, l53, []).
lr(l51, leq, l60, []).
lr(l53, leq, l51, []).
lr(l50, leq, lk0, []).
lr(l50, follows, l3, []).
lr(l5, leq, l3, []).
lr(l7, leq, l3, []).
lr(l10, leq, l3, []).
lr(l1, leq, l12, [a1:d1]).
lr(l2, leq, l12, [a1:d2]).
lr(l20, less, l2, []).
lr(l19, less, l13, []).
lr(l18, less, l12, []).
lr(l17, less, l10, []).
lr(l16, less, l3, []).
lr(l15, leq, l20, []).
lr(l14, leq, l19, []).
lr(l13, leq, l18, []).
lr(l11, leq, l17, []).
lr(l12, leq, l8, []).
lr(l4, leq, l16, []).
lr(l12, leq, l6, []).
lr(l9, leq, l8, []).
lr(l8, leq, l4, []).
lr(l6, leq, l4, []).
lr(l3, leq, lk0, []).

toplabel(l96).
toplabel(l50).
toplabel(l3).

bottomlabel(l105).
bottomlabel(l56).
bottomlabel(l12).

feat(i72, sort, temprel).
feat(i71, sort, temprel).
feat(i70, sort, temprel).

198 Computing Discourse Relations on a Linguistic Basis

feat(i69, sort, temprel).
feat(i68, sort, event).
feat(i67, sort, temprel).
feat(l110, pol, 0).
feat(i65, sort, state).
feat(i63, gend, fem).
feat(i63, sort, person).
feat(i64, num, sg).
feat(i64, gend, fem).
feat(i64, sort, location).
feat(i50, mode, [114,101,110,110,101,110]).
feat(i61, sort, temprel).
feat(i60, sort, temprel).
feat(i59, sort, temprel).
feat(i58, sort, temprel).
feat(i57, sort, temprel).
feat(i56, sort, temprel).
feat(i55, sort, now).
feat(i54, sort, cut).
feat(i53, sort, tf).
feat(i52, sort, tt).
feat(i51, sort, event).
feat(i50, sort, state).
feat(l100, presup, 1).
feat(l98, presup, 1).
feat(i49, sort, temprel).
feat(i48, sort, temprel).
feat(i47, sort, temprel).
feat(i46, sort, event).
feat(i44, sort, temprel).
feat(l61, pol, 0).
feat(i40, sort, temprel).
feat(i36, sort, location).
feat(i39, sort, person).
feat(i38, sort, state).
feat(i37, sort, state).
feat(i35, gend, masc).
feat(i35, sort, vehicle).
feat(i33, sort, temprel).
feat(i32, sort, temprel).
feat(i31, sort, temprel).
feat(i30, sort, temprel).
feat(i29, sort, temprel).
feat(i28, sort, temprel).
feat(i27, sort, now).
feat(i26, sort, cut).
feat(i25, sort, tf).
feat(i24, sort, tt).
feat(i23, sort, event).

Kai-Uwe Carstensen 199

feat(i22, sort, state).
feat(i14, named, [109,97,114,105,97]).
feat(i21, sort, temprel).
feat(i20, sort, temprel).
feat(i19, sort, temprel).
feat(i18, sort, event).
feat(i17, sort, temprel).
feat(l17, pol, 0).
feat(i16, sort, state).
feat(i14, gend, fem).
feat(i14, sort, person).
feat(i15, num, sg).
feat(i15, gend, fem).
feat(i15, sort, location).
feat(i1, mode, [103,101,104,101,110]).
feat(i12, sort, temprel).
feat(i11, sort, temprel).
feat(i10, sort, temprel).
feat(i9, sort, temprel).
feat(i8, sort, temprel).
feat(i7, sort, temprel).
feat(i6, sort, now).
feat(i5, sort, cut).
feat(i4, sort, tf).
feat(i3, sort, tt).
feat(i2, sort, event).
feat(i1, sort, state).

d_in(i73, l105, [a1:d1,a2:d4,a3:d5]).
d_in(i72, l105, [a3:d6]).
d_in(i71, l105, [a3:d6]).
d_in(i70, l105, [a3:d6]).
d_in(i69, l105, [a3:d6]).
d_in(i68, l105, [a3:d6]).
d_in(i67, l105, [a3:d5]).
d_in(i65, l103, []).
d_in(i63, l100, []).
d_in(i64, l98, []).
d_in(i61, l105, []).
d_in(i60, l105, []).
d_in(i59, l105, []).
d_in(i58, l105, []).
d_in(i57, l105, []).
d_in(i56, l105, []).
d_in(i55, l105, []).
d_in(i54, l105, []).
d_in(i53, l105, []).
d_in(i52, l105, []).
d_in(i51, l105, []).

200 Computing Discourse Relations on a Linguistic Basis

d_in(i50, l105, []).
d_in(i49, l56, [a2:d4]).
d_in(i48, l56, [a2:d4]).
d_in(i47, l56, [a2:d4]).
d_in(i46, l56, [a2:d4]).
d_in(i44, l56, [a2:d3]).
d_in(i40, l54, []).
d_in(i36, l54, []).
d_in(i39, l54, []).
d_in(i38, l54, []).
d_in(i37, l54, []).
d_in(i35, l52, []).
d_in(i33, l56, []).
d_in(i32, l56, []).
d_in(i31, l56, []).
d_in(i30, l56, []).
d_in(i29, l56, []).
d_in(i28, l56, []).
d_in(i27, l56, []).
d_in(i26, l56, []).
d_in(i25, l56, []).
d_in(i24, l56, []).
d_in(i23, l56, []).
d_in(i22, l56, []).
d_in(i21, l12, [a1:d2]).
d_in(i20, l12, [a1:d2]).
d_in(i19, l12, [a1:d2]).
d_in(i18, l12, [a1:d2]).
d_in(i17, l12, [a1:d1]).
d_in(i16, l10, []).
d_in(i14, l7, []).
d_in(i15, l5, []).
d_in(i12, l12, []).
d_in(i11, l12, []).
d_in(i10, l12, []).
d_in(i9, l12, []).
d_in(i8, l12, []).
d_in(i7, l12, []).
d_in(i6, l12, []).
d_in(i5, l12, []).
d_in(i4, l12, []).
d_in(i3, l12, []).
d_in(i2, l12, []).
d_in(i1, l12, []).

